质数与合数 篇一
教学反思要不断地获取学生的反馈意见,并把它作为另一个认识对象进行分析,最后把两个具体的认识对象揉在一块儿整合思考。以下是关于小学数学《质数与合数》教学反思范文,希望对大家有帮助!
《质数与合数》教学反思
一一质数和合数是五下第一单元《倍数与因数》学习内容的一个转折点,这一知识点上承因数和倍数、奇数和偶数,下接最大公因数和最小公倍数,以及通分、约分,直接影响到学生学习本册后续的重要内容。
一一在《质数和合数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,使学生在参与中产生求知欲望,调动学习积极性,从中体验了解决问题的喜悦或失败的情感。
一一一、面向全体学生,力求让每个学生都参与到活动中去
一一新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,概念之后,我纯粹放手让学生找出1——100中的质数,学生以四人一组合作完成,结果:有的组很快就找出来了,而有的组却很慢,而且错了不少,当孩子说出为什么又快又准的找出来时,其他孩子恍然大悟,连连称赞方法好,这一过程我努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行***探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。
一一二、把课堂的主动权还给学生,让生做课堂的主人。
一一课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。
一一三、点燃学生智慧的火花,让学生真正活起来。
一一爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。
一一这节课虽然花费了很多时间只学习了两个概念,但我相信,它在学生的收获中却不只是这两个概念,就算只是两个概念,我想那也是本质的东西。尝试教学它渗透的就是磨刀不误砍柴功,它需要师生共同努力。
质数和合数 篇二
质数和合数
教学内容 质数和合数 课时 第1课时
教材解读 在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、
合数的概念,为后面学习求公因数、最小公倍数以及约分、通分打下基础。在本单元,要求学生能用自己的方法找出100
以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数
教学目标 理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、***思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点 判断质数、合数的方法
教学难点 质数、合数同奇数、偶数的区别
预习提纲
1、我能写出下面各数的因数
数字 因数 数字 因数
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20
2、我能根据因数的个数把上面数字进行分类
只有一个因数 只有1和它本身两个因数 有两个以上的因数
3、我能给上面分出类的数字取一个名称
只有1和它本身两个因数的数 ;有两个以上的因数的数 ;1 。
教学流程
学生学习活动 教学板块或教师活动
一、***自学
学生***完成预习提纲所提出的问题。 老师巡视
学生学习活动 教学板块或教师活动
二、互动交流
学生互评学生同桌交流和小组交流。 点评展示情况(必要时作适当补充)
三、总结运用
只有1和它本身两个因数的数是质数
有三个或以上因数的数是合数
1既不是质数也不是合数
探究活动。找朋友
同学们你们都学习了分解质因数吧?有些数的因数会由几个2或者几个3构成,或者由几个5构成,今天我们便来玩一个游戏
【游戏目的】通过游戏,锻炼学生的心算能力,培养学生的团体观念。
【游戏刀具】用卡片制作数字标牌:2、3、5,每个标牌要做多个,数字越小数量越多。另外用小红旗作出6、8、15、10、9、4、25、27、30、50、125等数字旗。
【游戏人员安排】2-3个学生做裁判,【游戏过程】
1.裁判随机选择1个数字红旗,譬如选择数字旗8。
2.下面的同学要快速的找到自己的朋友,3个数字标牌是2的同学要在数字旗下面集合。
其它不是8的因数的同学要到另一个裁判身边集合!
3.游戏中带有2标牌的同学如果没有找到朋友,就要给大家表演一个小节目!并选择一个数字朋友,如3,构成6,拿到一个数字旗6,进行下一轮游戏。
4.所有2和3的号牌同学再次组队,站在数字旗6的队伍中。
5.游戏中可以找多个朋友,譬如:同时找两个2或者两个5或者一个3一个5等等。
6.一个裁判在场边负责秩序!
学生学习活动 教学板块或教师活动
四、巩固或提高
1.最小的质数是( ),最小的合数是( ),最小的奇数是( )。
2.20以内的质数有( )。
二、判断
1.48的全部因数是2、3、4、6、8、12、16、24和48,共有9个,所以是合数。( )
2.任何一个自然数最少有两个因数。( )
3.一个数如果能被11整除,则这个数一定合数。( )
4.一个自然数越大,它的因数个数就越多。( )
适时点拨学困生。
教 学 反 思
质数和合数 篇三
教学目标:
知识技能目标:1创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。
过程方法目标:培养学生自主探索、***思考、合作交流的能力
情感态度目标:培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
一、课前谈话
师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,那里面可就有丰富的数学知识了,谁能试着用你学过的整除知识描述你的数?
二教学过程:
(一)情境引入:通过这些个数还可以拼长正方形呢!师边说边展示:
(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在***形中写上这个数,还要标上长宽或边长(举例)
教师提示:(同时演示)比如我的数是39,我就用39个小方格,可以拼出这样的13×3和3×13的长方形,别看摆法不同,但属于同一种的
(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠***。
(3)学生反馈汇报:谁拼得多?还有更多的吗?
生反馈36号5种,并验证
(4)看来36号同学是这次比赛的冠***。是最聪明的,你们同意吗?有多少人谁不同意,找个代表说说理由。
(5)你们的意思是说你们的数决定了你们只能拼出种类少,而不是你们不聪明,是吗? 还有谁也是这样认为的?可是,我发现愣了半天只拼出一种的,你们没好好想吧。(学生说)那好,只拼出一种的同学先把你们的数贴到黑板上再把你们的方格纸拿上来,我们一起看看他们是不是没动脑子。
收集质数和1的情况并展示,学生贴数
(二)揭示质数、合数
(1)(为了看着方便,从小到大给它们排下序,其他同学帮着检查)
挑出1:你用一个小方格跟谁拼了,拼新的吗你(把号牌拿回去)
(2)为什么这些数只能拼出一种来,结合拼出的情况想一想这些数有什么共同点
师:约数只有1和本身
板书:1和本身
只有2个约数
师板书“质数、素数”
出示“概念“投影读一读
(3)拼出不只一种的都有谁,把你们的数也贴上去,谁愿意把你的情况展示一下(挑出4 和任意一个展示)
(4)为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?
板书:除了1和本身,还有
师:那你们知道这样的数叫什么数吗?
板书:合数
投影“概念“读一读
那现在知道为什么这些数只拼出了一种?(学生说)这些数拼出的不止一种呢?(学生说)?36号为什么最多呢?
(5)有没有落下没研究的?数字“1”你觉得你应该把数贴在那一块?为什么?
揭示:1既不是质数也不是合数(板书)读一读
(6)小练习:a现在我可以说自然数中不是质数就是合数,对吗?
b抢答练习:一些数快速判断质数合数。你怎么这么快判断出来的?有什么窍门?
补充板书:至少有3个 谁正好有3个约数? 4 还是最小的合数
师:从板面上我们38内9既是奇数又是合数,你能看出什么来?实际上你真能找出最大质和数吗?板书省略号 可我们却能找出什么?(最小的)最大 2 4
奇合 质奇
(7)学到这,可以看出刚才比赛规则的不公平,造成了结果的不公平,那我们就来一次公平的比赛,每组都有相同的4个数,如果还让你选一个数拼***的话,你们会选谁,限时1分钟,时间到,我们同时出示,就比比哪个组选的准
40 48 54 97
反馈:为什么不选97 和54?可以看出拼出种类的多少跟什么有关,跟什么无关?
三、巩固练习,加深认识。
出示“学生表“
1、猜学号认同学(小卷子)
既不是质数也不是合数 1
最小的合数 最小的偶数+最小的既是奇数又是质数的数 4 5
两位数中最小的质数 11
10以内最大的质数+13 20
各个数位上的数相加和为最小合数 13 22 31 4
这两个同学学号中的数字相成等于91。 13 7
2、出示哥德巴赫猜想
四、小结收获
质数和合数 篇四
教学目标
1、引导学生自主探索、掌握质数和合数的意义,并能正确辨析。
2、能熟记20以内的质数。用筛选法编制100以内的质数表,掌握初步分类的数学方法。
3、使学生***思考能力和合作精神得到和谐发展。
教学重点
1.理解掌握质数、合数的概念及其特征。
2.初步学会准确判断一个数是质数还是合数。
教学难点
区分奇数、质数、偶数、合数。
教学准备:
1、学生有关质数合数的学具:1-12的约数的纸片(学生已经提前写好),教师准备也准备相同卡片。
2、1-100的数表 (学生已经用不同颜色的笔依次划去了2、3、5、7的倍数,2、3、5、7本身留下。)
3、课件或小黑板写好了判断题,填空题。
教学过程:
一、 复习
1、什么叫约数和倍数?
2、找出13、14的约数。
14的约数中包含2,那14就是2的倍数,它能被2整除,这样的数又称为什么数?
引入复习偶数和奇数的意义。(板书)偶数和奇数是把自然数按什么标准来分类的呢?(板书)
你能说出1-12中的奇数和偶数各有哪些吗?(生答后,师板书)
自然数中不是奇数就是偶数,奇数加奇数等于什么数?(偶数)8等于哪两个奇数之和呢?(板书8=3+5)
这道简单的算式却符合世界著名的歌德巴赫猜想,200多年前德国的一位数学教师歌德巴赫在教学中发现“任何不小于6的偶数都是两个奇质数之和” 。这个猜想目前因没人能全面证明而被称为“数学皇冠上的明珠”。你对这个猜想有什么不明白的地方?
生:什么叫奇质数?师:奇质数是指又是奇数又是质数的数。
生:那什么叫质数呢?师:那这节课我们就来认识质数这个新名词和它的伙伴“合数”。
二、 新授
首先请同学们拿出写好了1-12的约数情况的学具纸片,
例1.写出下面各数的所有约数:
1的约数: 2的约数: 3的约数: 4的约数:
5的约数: 6的约数: 7的约数: 8的约数:
9的约数: 10的约数: 11的约数; 12的约数:
二、探究新知
(一)引导学生归纳。
1.按这些约数个数的多少,可以分为哪几种情况?
2.分组讨论后汇报。
3.引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的,有四个约数的,有六个约数的。
教师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)
(二)按约数个数的多少,把自然数分成三种情况。
1.分组再讨论。
2.汇报讨论结果。
3.引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别是:
板书:2的约数:1、2
3的约数:1、3
5的约数:1、5
7的约数:1、7
11的约数:1、11
有两个以上的约数,它们分别是:
板书:4的约数:1、2、4
6的约数:1、2、3、6
8的约数:1、2、4、8
9的约数:1、3、9
10的约数:1、2、5、10
12的约数:1、2、3、4、6、12
(三)观察比较发现特点:
1.观察2、3、5、7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)
2.观察4、6、8、9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的约数)
3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习的新知识,质数和合数。(板书课题:质数和合数)
(四)质数、合数的定义。
1.一个数,如果只有1和它本身两个约数,这样的数叫做质数。(或素数)(板书)
2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。(板书)
3.教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点。
1既不是质数,也不是合数。(板书)
(五)按约数个数的多少给自然数分类。
1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?
三类:质数、合数和1
2.教师提问:判断一个数是质数还是合数,关键是找什么?
关键:找约数的个数。
(六)教学例2.
1.判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
(学生***练习,集体订正)
教师强调:熟练运用找约数的方法,这种做题法是做对题的关键。
2.反馈练习: 下面哪些数是质数,哪些数是合数?
19 21 43 67
(七)介绍100以内的质数表。
1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
2.用质数表检查例2
检查方法;表中有17、29、37,说明是质数;
22、35、87表中没有,又不是1,说明是合数。
3.教师提示:要熟记20以内的质数
三、全课小结
同学们,这节课你学到了什么知识?
四、课堂练习
1.下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7、本身不画掉),剩下的数都是什么数?最早使用上述方法来寻求质数的人,是古代希腊数学家埃拉托斯特尼
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
教师提示:古希腊的数学家就是用这种方式找质数的,有兴趣的同学可以用这种方法找100以内的质数。
2.检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里,再用质数表检查。
质数和合数 篇五
教材分析:,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。是求最大公约数、最小公倍数以约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。
教学内容:九年义务教育六年制小学教科书第58页、第59页上半页的内容及练习十三中的1~4题。
教学目的:
1、使学生掌握的概念,知道它们的联系和区别。
2、能正确判断一个数是质数还是合数。
3、培养学生判断推理能力。
教学重点:掌握质数、合数概念,会判断一个数是质数还是合数。
教学难点 :判断一个数是质数还是合数。
教学关键:使学生把握住的根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。
教具准备:纸片、投影器、投影片等。
教学过程 :
一、复习。
师:“我们学过求过一个数的约数,那么每个数的约数的个数又有什么规律呢?这节课我们来探索这个问题。”
师:“谁能说说什么是约数?”
生:“如果数a能被数b(b不等于0)整除,a就叫做b的倍数,b就做a的约数(或a的因数)。
师:“谁又能说说每个数的约数有什么特点?”
生:“一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。”
二、教学新课。
1、教学例1。
教师出示例1(纸片)时说:“请两名学生分别写 chayi5 出左右两排数的约数。”点两名学生上黑板完成例1。
例1 写出下面每个数的所有的约数。
1的约数:1 7的约数:1、7
2的约数:1、2 8的约数:1、2、4、8
3的约数:1、3 9的约数:1、3、9
4的约数:1、2、4 10的约数:1、2、5、10
5的约数:1、5 11的约数:1、11
6的约数:1、2、3、6 12的约数:1、2、3、4、 6、12
师:“谁能根据这些数的约数的个数进行分类?”教师在黑板上板书:
有一个约数的是:(生)1
有两个约数的是:(生)2、3、5、7、11
有两个以上约数的是:(生)4、6、8、9、10、12
请一名学生上黑板进行分类,其余学生在书上完成。
师:“一个数,如果只有1和它本身两个约数,这样的数叫质数(或素数)(张贴质数概念)。例如,2、3、5、7、11都是质数。谁能说说,还有哪些数是质数?”
生:“13、17、19、23……”
师:“质数的个数数得完吗?”
生:“数不完,质数的个数有无数个?”
师:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(张贴合数概念)。例如,4、6、8、9、10、12都是合数。谁能说说,还有哪些数是合数?”
生:“4、6、8、100……”
师:“合数的个数数得完吗?”
生:“合数的个数数不完,它的个数有无数个。”
师:“1不是质数,也不是合数(张贴概念)。”
2、教学例2
师:“根据的定义,我们可以判断一个数是质数还是合数。请看例题。”
投影:
判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
质数有:(生)17、29、37
合数有:(生)22、35、87
师:“根据的定义,质数只有1和它本身两个约数,合数除了1和它本身外,还有别的约数,请某某同学上来找出所有的质数,并把答案填在投影片上。”
学生填完后,师:“请你说说是怎样想的。”
生1:“17、29、37是质数。因为17只有1和17两个约数,29只有1和29两个约数,37只有1和37两个约数。”
师:“请某某同学上来找出所有的合数,并把答案填在投影片上。”学生填完后,
师:“请你说说是怎样想的。”
生2:“22、35、87是合数。因为22除了1和22两个约数外,还有2、11两个约数,35除了1和35两个约数外,还有5、7两个约数,87除了1和87两个约数外,还有3、29两个约数。”
师:“这两位同学回答得很好,老师相信大家都能够判断一个数是质数,还是合数了。下面请同学在书上第59面完成中间的做一做。”
投影:
下面哪些数是质数,哪些是合数?
19 21 43 67
质数:(生)19、43、67
合数:(生) 21
请两名学生在投影片上分别写出答案,并请学生说说怎样想的。
师:“请同学们做一做,20以内的数中,有哪些数是质数。”
学生自己动手制出20以内质数表。
师:“如果给我们一个数,如87,我们怎样知道这些数只有1和它本身两个约数,是个质数呢?”
生:“我们可以用2、3、5、7、9……去除这个数,如果这个数不能被2、3、5、7、9……这些数整除,就说明这个数只有1和它本身两个约数,那么它就是一个质数。”
师:“这位同学回答得非常好,判断一个数是不是质数,我们通常可以用2、3、5、7、9、11……这些数除这个数,如果都不能整除,就说明这个数是质数。”
三、巩固练习。
师:“下面我们一起来做几个练习,请看屏幕。”
投影:题一
检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里。
27 37 41 51 57 69 83 87
质数 合数
投影:题二
在自然数1~20中:
奇数有: 偶数有:
质数有: 合数有:
投影:题三
下面的判断对吗?说出理由。
(1)所有的奇数都是质数。
(2)所有的偶数都是合数。
(3)在自然数中,除了质数以外都是合数。
(4)1既不是质数,也不是合数。
四、引导小结,板书课题。
师:“请同学回顾一下,这节课我们学习了什么知识?”
生:“学习了质数、合数的定义;知道了1既不是质数,也不是合数;学会了判断一个数是质数还是合数。”
师:“今天,我们学习的知识的课题就是……(板书课题:)。”
五、布置作业 。
师:“请同学们从课本第62面的第1题中的99数中,先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉),自己动手制作100以内的质数表。做完以后与第59面中间的质数表对照一下,看谁能够一气呵成,制出100以内的质数表。我们今天到此为止,下课!”
六、简评。
这节课的主要特点是:循循善诱,层层深入。首先,教师引导学生通过对例1中12个数的约数的个数的分类,初步使学生认识到根据一个数的约数的个数,可以把自然数分为三类:质数、合数和1。其次,教师进一步让学生认识这三个概念。再次,教师让学生从例2中渐渐熟悉判断一个数是质数还是合数的方法。最后,通过练习使学生完全掌握判断一个数是质数还是合数的方法。同时,让学生知道1既不是质数也不是合数。
质数与合数 篇六
时间:XX年12月10日
地点:大会议室
主备人:曹
参加人员:五数全体老师
教研内容:质数与合数、分解质因数
教学目标:
1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。
2、培养学生观察、比较、概括和判断的能力,以及自主探索、***思考、合作交流的能力。
3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透“对立统一”的辩证唯物主义的观点。
教学重点:
1、 理解质数和合数的意义,质因数和分解质因数的意义。
2、 分解质因数的方法。
教学难点:
1、如何判断一个数是质数还是合数。
2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。
重难点突破:
1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。
2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。
讨论要点:
1、认识质数和合数。围绕“排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢”这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。
2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。
质数和合数 篇七
课题:
教学目标
1.使学生理解质数、合数的概念。
2.熟记20以内的质数。
教学重点
1.理解掌握质数、合数的概念。
2.初步学会准确判断一个数是质数还是合数。
教学难点
区分奇数、质数、偶数、合数。
教学步骤
一、铺垫孕伏。
例1.写出下面各数的所有约数:
1的约数: 2的约数: 3的约数: 4的约数:
5的约数: 6的约数: 7的约数: 8的约数:
9的约数: 10的约数: 11的约数; 12的约数:
二、探究新知。
(一)引导学生归纳。
1.按这些约数个数的多少,可以分为哪几种情况?
2.分组讨论后汇报。
3.引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的,有四个约数的,有六个约数的。
教师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)
(二)按约数个数的多少,把自然数分成三种情况。
1.分组再讨论。
2.汇报讨论结果。
3.引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别是:
板书:2的约数:1、2
3的约数:1、3
5的约数:1、5
7的约数:1、7
11的约数:1、11
有两个以上的约数,它们分别是:
板书:4的约数:1、2、4
6的约数:1、2、3、6
8的约数:1、2、4、8
9的约数:1、3、9
10的约数:1、2、5、10
12的约数:1、2、3、4、6、12
(三)观察比较发现特点。
1.观察2、3、5、7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)
2.观察4、6、8、9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的约数)
3.教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习
的新知识,.(板书课题:)
(四)质数、合数的定义。
1.一个数,如果只有1和它本身两个约数,这样的数叫做质数。(或素数)(板书)
2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。(板书)
3.教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点。
1既不是质数,也不是合数。(板书)
(五)按约数个数的多少给自然数分类。
1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)
2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数)
(六)教学例2.
1.判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
(学生***练习,集体订正)
教师强调:熟练运用找约数的方法,这种做题法是做对题的关键。
2.反馈练习: 下面哪些数是质数,哪些数是合数?
19 21 43 67
(七)介绍100以内的质数表。
1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
2.用质数表检查例2
检查方法;表中有17、29、37,说明是质数;
22、35、87表中没有,又不是1,说明是合数。
3.教师提示:要熟记20以内的质数
三、全课小结
同学们,这节课你学到了什么知识?
四、课堂练习
1.下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、
7、本身不画掉),剩下的数都是什么数?
2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
教师提示:古希腊的数学家就是用这种方式找质数的,有兴趣的同学可以用这种方法找100以内的质数。
2.检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里,再用质数表检查。
3.填空题。
①质数有( )个约数,合数至少有( )个约数。
②最小的质数是( ),最小的合数是( ).
③( )既不是质数也不是合数。
4.判断。
①所有的奇数都是质数。( )
②所有的偶数都是合数。( )
③在自然数中,除了质数以外都是合数。( )
④既不是质数也不是合数。( )
5.在整数1~20中:
①奇数有: 偶数有:
②质数有: 合数有:
五、板书设计
有一个约数的
有两个约数的
有两个以上的数的
1的约数1
2的约数1、2
3的约数1、3
5的约数1、5
7的约数l、7
11的约数1、11
4的约数1、2、4
6的约数1、2、3、6
8的约数1、2、4、8
9的约数1、3、9
10的约数l、2、5、10
12的约数1、2、3、4、6、12
l既不是质数也不是合数
一个数,如果只有1和它本身两个约数,这样的数叫做质数(素数)
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
读书破万卷下笔如有神,以上就是记得网为大家带来的7篇《质数与合数》,希望可以对您的写作有一定的参考作用。