人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?记得网为朋友们精心整理了7篇《等腰三角形》,如果能帮助到亲,我们的一切努力都是值得的。
初中数学等腰三角形的性质教案 篇一
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题.
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律.
教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题.
难点:引辅助线证明定理和推论1的应用.
教学过程与流程设计
引导性材料:
1.学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2.教师用等腰三角形纸片演示两腰叠合,再把纸片展开.
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如***,△abc中,ab=ac.
求证:∠b=∠c.
(方法1)证明:作顶角的平分线ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (辅助线作法)
ad=ad (公共边)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边bc上的高ad. (证明过程由学生口述)
方法3:作底边bc上的中线ad.(证明过程由学生口述)
(演示):等腰三角形的性质定理 等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1)在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?
(2)在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?
(3)在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边.
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合.)
练习:填空,在△abc中,
(1)∵ab=ac,ad⊥bc,
∴∠ =∠ , = .
(2)∵ab=ac,ad是中线,
∴ ⊥ ,∠ =∠ .
(3)∵ab=ac,ad是角平分线,
∴ ⊥ , = .
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如***,△abc中,ab=ac=bc.
求证:∠a=∠b=∠c=60°
证明:∵ ab=ac,
∴∠b=∠c(等边对等角),
∵ac=bc,
∴∠a=∠b(等边对等角),
∴∠a=∠b=∠c,
初中数学等腰三角形的性质教案 篇二
教学重点:
认识等腰三角形和等边三角形以及它们的特征
教学目标:
1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索***形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:
长方形、正方形纸,剪刀、尺等
教学过程:
一、复习:关于三角形,你有那些知识?
1、按角分成三种角
2、三个内角和是180度
算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减
二、认识等腰三角形
1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)
有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)
指出:像这种两条边相等的三角形,我们叫它等腰三角形
2、折一折、剪一剪
取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开
观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的【WWW.CHAYI5.COM】。)
除了两条边是相等的,还有什么也是相等的?你是怎么知道的?
《等腰三角形》教学反思 篇三
本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1、充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2、在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
等腰三角形 篇四
2.5 等腰三角形的轴对称性(2)
教学目标
1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画***、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点
熟练地掌握等腰三角形的判定定理。
教学难点
正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)
学生活动
设计思路
前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境
如***所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc和一个底角∠c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一
请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
(1)在半透明纸上画一条长为6cm的线段bc.
(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.
(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?
问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出***形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明
思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?
问题3:已知如***,在△abc中,
∠b=∠c.求证:ab=ac.
引导学分析问题,综合证明。
思考:你还有不同的证明方法吗?
问题4:“等边对等角”与“等角对等边”, 它们有什么区别和联系?
思考——讨论——展示。
1.学生***完成证明过程的基础上进行小组交流。
2.班级展示:小组代表展示学习成果。
在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力。
通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解。
四、探索发现二
问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?
问题6:等边三角形有什么性质?
问题7:一个三角形满足什么条件就是等边三角形了?为什么?
1.学生阅读教材,进行自主学习。
2.小组讨论交流。
3.展示学习成果:等边三角形的概念、等边三角形的性质、
等边三角形的判定。
培养学生阅读教材的学习习惯和自主学习能力。
引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径。
五、学以致用
请同学完成课本p63-64练习第1、2、3题。
学生***思考、小组讨论、展示交流、相互评价。
引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力。
巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力。
六、归纳小结
1.这节课你有怎样的收获?还有哪些困惑呢?
2.布置作业:
课本p67习题2.5第7、8、10题。
1.学生以小组为单位归纳本节课所学习的知识、方法。
2.展示交流,相互补充,建立知识体系。
3.讨论困惑问题。
4.完成作业。
引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力。
等腰三角形 篇五
教学目标:
知识技能
了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题。
数学思考
培养学生探究思维、逻辑思维能力,探索引辅助线的规律。
情感态度与价值观:
渗透"实践--理论--实践"的辩证唯物主义思想,培养探究分析数学知识方法的兴趣,养成踏实细致、严谨科学的学习习惯。
教学重点与难点
重点:理解等腰三角形的性质定理、推论,并能用它们解决简单的问题。
难点:引辅助线证明定理和推论1的应用。
教学过程与流程设计
引导性材料:
1. 学生把等腰三角形的两腰叠在一起,发现它的两个底角重合,这说明等腰三角形具有什么性质?(等腰三角形的两个底角相等)(演示叠合过程)
2. 教师用等腰三角形纸片演示两腰叠合,再把纸片展开。
提问:你能发现等腰三角形还有什么特性吗?
(引入课题,明确目标)(显示教学目标)
教学设计:
问题1:怎样来证明“等腰三角形的两个底角相等”呢?
已知:如***,△abc中,ab=ac.
求证:∠b=∠c.
(方法1)证明:作顶角的平分线ad.
在△bad和△cad中。
ab=ac (已知)
∠1=∠2 (辅助线作法)
ad=ad (公共边)
∴△bad≌△cad(sas)
∴∠b=∠c(全等三角形的对应角相等)
问题2:上述命题还有哪些证法?
方法2:作底边bc上的高ad. (证明过程由学生口述)
方法3:作底边bc上的中线ad.(证明过程由学生口述)
(演示):等腰三角形的性质定理 等腰三角形的两个底角相等
(简写成“等边对等角”)
观察上述三种方法,思考如下问题:
(1) 在等腰△abc中,如果ad是顶角的平分线,那么ad是否平分底边?是否垂直于底边?
(2) 在等腰△abc中,如果ad是底边上的高,那么ad是否平分顶角?是否平分底边?
(3) 在等腰△abc中,如果ad是底边上的中线,那么ad是否平分顶角?是否垂直于底边?
推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
(等腰三角形的顶角平分线、底边上中线、底边上的高互相重合。)
练习:填空,在△abc中,
(1) ∵ab=ac,ad⊥bc,
∴∠ =∠ , = .
(2) ∵ab=ac,ad是中线,
∴ ⊥ ,∠ =∠ .
(3) ∵ab=ac,ad是角平分线,
∴ ⊥ , = .
问题2:等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的性质吗?
推论2:等边三角形的各角都相等,并且每一个角都等于60°.(学生完成证明)
已知:如***,△abc中,ab=ac=bc.
求证:∠a=∠b=∠c=60°
证明:∵ ab=ac,
∴∠b=∠c(等边对等角),
∵ac=bc,
∴∠a=∠b(等边对等角),
∴∠a=∠b=∠c,
∵∠a+∠b+∠c=180°(三角形内角和定理),
∴∠a=∠b=∠c=60°
例题解析:
例1:填空,1.在△abc中,ab=ac.
(1) 若∠a=50°,则∠b= °,∠c= °;
(2) 若∠b=45°,则∠a= °,∠c= °;
(3) 若∠b=∠a,则∠a= °,∠c= °;
(4) 若∠b=2∠a,则∠a= °,∠c= °.
2.等腰三角形的一个角是40°,则它的底角是 .
3.等腰三角形的一个角是120°,则它的底角是 .
例2:已知,如***(6),房顶的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋椽ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数。
解:在△abc中,
∵ab=ac(已知),
∴∠b=∠c (等底对等角),
∴∠b=∠c=(180°-∠bac)=40°,
(三角形内角和定理),
又∵ad⊥bc(已知),
∴∠bad=∠cad(等腰三角形顶角的平分线与底边上的高互相重合),
∵∠bac=100°,
(7) ∴
课堂练习:
已知:如***(7)中的三角形测平架中,ab=ac,在bc的中点挂一个重锤,自然下垂,调整架身,使点恰好在重锤线上。
求证:(1)ad⊥bc;
(2)这时bc处于水平位置,为什么?
课堂小结:
1. 等腰三角形的性质定理:“等边对等角”,揭示了同一个三角形中边与角之间的关系;
2. 等腰三角形性质定理的推论1、推论2;
3. 由推论1知,等腰三角形“底边上的三条主要线段互相重合”,这条线段具有三种不同的“身份”,因此,它是推证两条线段相等、角相等以及两条直线互相垂直必须关注的“热线”。
4. 掌握证明几何命题的完整过程,以及不同辅助线的添法,从中体验数学知识的美妙。
作业:习题14.3 第6、7题(作业本),其他课本
等腰三角形 篇六
一、教材分析?
1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:?
知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。?能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。?
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。?
2、教学重、难点:?
重点:等腰三角形性质的探索及其应用。?
难点:等腰三角形性质的探索及证明。?
3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。?
二、学情分析?
刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。?
三、教法分析?
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。?
四、学法建构?
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:?
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。?
2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。?
五、教学模式?
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。?
《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,
提高学生的自主意识和合作精神。?
六、教学程序和设想?
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。? (一)创设情境,观察联想。? 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何***形?(等腰三角形、四边形、梯形)? 2、两幅***中都有哪种几何***形?(等腰三角形)?
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。? (二)动手操作,揭示课题。? 3、什么是等腰三角形?等边三角形?它们有何关系 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。?
5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )?
6、小组代表用语言表达得出的结论。?
7、多媒体演示折叠过程,再现归纳得出的结论。?
8、揭示、板书课题:等腰三角形性质。?让学生温习、重现已学相关知识,为学习新知识做铺垫。?
波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力***通过学生动手操作、动眼观察、动***流表达,使学生充分感知等腰三角形性质。?
(三)***思考,探究新知。?
9、对于观察得出的结论是否能进行论证,请学生动手试一试。?
放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。?
(四)合作探究,交流创新。?
10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。?
组织学生探索、交流,有利于开阔学生的视野,形成一个既有***思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。?
(五)引导评价,形成规律。?
11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。
12、等边三角形是特殊等腰三角形,它又具有哪些性质呢
学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。?
运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。?
13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。?
(六)实践应用,巩固提高。?
例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据***中条件,你能求出哪些角的度数。?
把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。?达标练习(抢答)? ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。?
②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数?通过能力训练题,提高学生分析问题和解决问题的实践能力。?
③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。?进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。?
(七)反思归纳,形成结构。?
1、引导学生对学习过程进行小结:?
①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么
②所学知识能解决哪些实际问题
③本节课所运用的学习方法对你今后学习有什么启示
2、布置作业:(分层布置)?
这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。
《等腰三角形》教学反思 篇七
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意***,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
(一)突出重点,实现教学目标
《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课
首先用生活中的***片引入等腰三角形的基本***形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果
这节课,也有不足的地方:
(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
以上就是记得网为大家整理的7篇《等腰三角形》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在记得网。