数学必考知识点

数学必考知识点

在日常的学习中,是不是听到知识点,就立刻清醒了?知识点也可以通俗的理解为重要的内容。掌握知识点是我们提高成绩的关键!下面是帮大家整理的数学必考知识点,仅供参考,大家一起来看看吧。

数学必考知识点1

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例

fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

3.1.3概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的`基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

3.2.1—3.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)

3.3.1—3.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;

(2)几何概型的概率公式:

P(A)=

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

数学必考知识点2

***形的认识、测量量的计量

一、长度单位是用来测量物体的长度的。常用的.长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

三、面积单位是用来测量物体的表面或平面***形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

九、常用的质量单位有:吨、千克、克。

十、质量单位:

十一、常用的时间单位有:

世纪、年、季度、月、旬、日、时、分、秒。

十二、时间单位:(60)

十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。

十四、常用计量单位用字母表示:

数学必考知识点3

  复数的概念:

形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

复数的表示:

复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:

(1)复平面、实轴、虚轴:

点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的'点都表示实数,除原点外,虚轴上的点都表示纯虚数

(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:

复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

虚数单位i:

(1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

数学必考知识点4

解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r

你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互***事件同时发生的.概率公式。)

二项式展开式的通项公式、n次***重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0

求分布列的解答题你能把步骤写全吗?

如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方***;理解频率分布直方***矩形面积的几何意义。)

你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

数学必考知识点5

  一.例题讲解:

【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

A) M=N P B) M N=P C) M N P D) N P M

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z}

对于集合P:{x|x= ,p∈Z},由于3(n-1)+1和***+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

分析二:简单列举集合中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合, ,则( B )

A.M=N B.M N C.N M D.

解:

当时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

A)1 B)2 C)3 D)4

分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的.个数为

A)5个 B)6个 C)7个 D)8个

变式2:已知{a,b} A {a,b,c,d,e},求集合A.

解:由已知,集合中必须含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个 .

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

综合以上各式有B={x|-1≤x≤5}

变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

解答:M={-1,3} , ∵M∩N=N, ∴N M

①当时,ax-1=0无解,∴a=0 ②

综①②得:所求集合为{-1,0, }

【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令当 时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程 有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和***文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,则? A ;

②若, ,则 ;

③若且 ,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。

4.有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、并集运算的性质

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

数学必考知识点6

一、知识梳理

1.三种抽样方法的联系与区别:

类别共同点不同点相互联系适用范围

简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少

系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多

分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4)要懂得从***表中提取有用信息

如:在频率分布直方***中①小矩形的面积=组距=频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方***的面积相等,可以由此估计中位数的.值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=

特别提醒:古典概型的两个共同特点:

○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2,即每个基本事件出现的可能性相等。

4.几何概型的概率公式:P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

任一x?A,x?B,记做AB

AB,BAA=B

AB={x|x?A,且x?B}

AB={x|x?A,或x?B}

Card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.集合元素具有①确定性;②互异性;③无序性

2.集合表示方法①列举法;②描述法;③韦恩***;④数轴法

(3)集合的运算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性质

n元集合的字集数:2n

真子集数:2n-1;

非空真子集数:2n-2

数学必考知识点7

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的`解集。

③求不等式解集的过程叫做解不等式。

不等式的判定:

①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

②在不等式“a>b”或“a

③不等号的开口所对的数较大,不等号的尖头所对的数较小;

④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

数学必考知识点8

高考数学必考知识点归纳必修一:

1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

高考数学必考知识点归纳必修二:

1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在***中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程

高考数学必考知识点归纳必修三:

1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:

1、三角函数:(***像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:

1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考数学必考知识点归纳文科选修:

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的'应用(高考必考)

选修1--2:

1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

高考数学必考知识点归纳理科选修:

选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

数学必考知识点9

数的整除

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

最小的质数是2,最小的合数是4

1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的.数,都能被5整除。

能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。

7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。

11.互质数:公约数只有1的两个数叫做互质数。

12.两数之积等于最小公倍数和最大公约数的积。

数学必考知识点10

何谓“数、行、形、算”,也就是数论,行程,***形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;***形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据了解,苏州重点中学近年来的这几大问题的考题占据全部了80%左右,对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%。那么如何复习这四方面的内容呢?

对于***形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

数论在数论学习中学生往往容易犯如下几个错误:

1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。

3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

知识体系:

整除问题:

(1)数的整除的特征和性质 (分班常考内容)

(2)位值原理的应用(用字母和数字混合表示多位数)

质数合数:

(1)质数、合数的概念和判断(2)分解质因数(重点)

约数倍数:

(1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

余数问题:

(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

这四个问题我们需要掌握到什么样的.程度?

近几年来,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张分班试卷的完成应该是能取得很好的成绩的。对此,编辑给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

数学必考知识点11

1、解不等式问题的分类

(1)解一元一次不等式、

(2)解一元二次不等式、

(3)可以化为一元一次或一元二次不等式的不等式、

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组、

2、解不等式时应特别注意下列几点:

(1)正确应用不等式的'基本性质、

(2)正确应用幂函数、指数函数和对数函数的增、减性、

(3)注意代数式中未知数的取值范围、

3、不等式的同解性

(5)|f(x)|

(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解、

(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)

数学必考知识点12

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的.倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

数学必考知识点13

1、柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相

平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE?ABCDE或用对角线的端点字母,如五棱柱AD

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平

行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥P?ABCDE

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离

与高的.比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台P?ABCDE

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开***是一个矩形。

数学必考知识点14

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的.定性与定量分析。主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

数学必考知识点15

1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率

面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。

体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。

质量单位有:吨、千克、克,写出它们之间的进率。

时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。

2.一年中的`大月有:1、3、5、7、8、10、12月,共7个,每月31天。

小月有:4、6、9、11月,共4个,每月30天。 二月平年是28天,闰年是29天。

3.一年有4个季度,每个季度3个月。

4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。

5.名数:把计量得到的数和单位名称合起来叫做名数。

单名数:只带有一个单位名称的叫做单名数。

复名数:带有两个或两个以上单位名称的叫做复名数。

6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。

数学必考知识点16

一、数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

二、相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

三、绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的'绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

初一数学必考知识点:有理数大小比较

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a

若a﹣b=0,则a=b.

初一数学必考知识点:相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

数学必考知识点17

分数除法是分数乘法的逆运算。

1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

2.计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

3.应用题:已知一个数的几分之几是多少,求这个数用除法计算。

小技巧:

(1)先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

(2)在解答分数除法应用题时要找准单位“1”的量,而简单的分数除法应用题就是要求单位“1”的量。

(3)分数除法应用题的数量关系式是:

单位“1”×分率=分率对应的`量

在具体解答时,用方程做,设单位“1”的量为ⅹ。

(4)解答分数除法应用题时,可以借助于线段***来分析数量关系。在画线段***时,先画单位“1”的量。

可以发现:当应用题中单位“1”已经知道时,就用乘法解;当单位“1”不知道,要求单位“1”时,要用除法解或列方程解。

数学必考知识点18

一、数列定义:

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的`通项公式为:an=a1+(n-1)d(1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数。

二、解释说明:

从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

三、推论公式:

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

四、基本公式:

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

数学必考知识点19

第二章 代数式

重点代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、重要概念

分类:

1。代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2。整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3。单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4。系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5。同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6。根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

7。算术平方根

⑴正数a的正的平方根( [a与平方根的区别]);

⑵算术平方根与绝对值

①联系:都是非负数, =│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8。同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的.因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9。指数

⑴ ( 幂,乘方运算)

① a0时, ②a0时, 0(n是偶数), 0(n是奇数)

⑵零指数: =1(a0)

负整指数: =1/ (a0,p是正整数)

二、运算定律、性质、法则

1。分式的加、减、乘、除、乘方、开方法则

2。分式的性质

⑴基本性质: = (m0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3。整式运算法则(去括号、添括号法则)

4。幂的运算性质:① ② ③ = ;④ = ;⑤

技巧:

5。乘法法则:⑴单⑵单⑶多多。

6。乘法公式:(正、逆用)

(a+b)(a-b)=

(ab) =

7。除法法则:⑴单⑵多单。

8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。

9。算术根的性质: = ; ; (a0); (a0)(正用、逆用)

10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. 。

11。科学记数法: (110,n是整数=

三、应用举例(略)

四、数式综合运算(略)

数学必考知识点20

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的'分式:

1/(3-4倍根号2)化简:

1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23

[解方程]

x^2-y^2=1991

[思路分析]

利用平方差公式求解

[解题过程]

x^2-y^2=1991

(x+y)(x-y)=1991

因为1991可以分成1×1991,11×181

所以如果x+y=1991,x-y=1,解得x=996,y=995

如果x+y=181,x-y=11,x=96,y=85同时也可以是负数

所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995

或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

有时应注意加减的过程。

转载请注明出处学文网 » 数学必考知识点

学习

高等学校与学生之间的法律关系

阅读(26)

本文为您介绍高等学校与学生之间的法律关系,内容包括高等学校学生权利的法律救济,高校与在校大学生的法律关系,高校与学生之间是什么法律关系。法律是由国家制定或认可并以国家强制力保证实施的,反映由特定物质生活条件所决定的统治阶级

学习

励志类100字美文

阅读(28)

本文为您介绍励志类100字美文,内容包括中学生晨读励志美文100篇,励志美文100篇,100字晨读励志美文。在平平淡淡的学习、工作、生活中,大家一定看过美文吧?一篇美文是建立在真挚情感的基础上的。文字表达的是内心的感受,是真情实感的自然流

学习

体育与健康说课稿通用

阅读(27)

本文为您介绍体育与健康说课稿通用,内容包括体育与健康说课稿范文,体育与健康说课稿ppt,体育说课稿完整版。一、说课稿的简要概述

学习

多一点作文

阅读(30)

本文为您介绍多一点作文,内容包括多一点作文半命题,多一点作文范文,多一点作文600字。无论是在学校还是在社会中,大家都写过作文,肯定对各类作文都很熟悉吧,作文是人们把记忆中所存储的有关知识、经验和思想用书面形式表达出来的记叙方式。

学习

对红花的养殖方法是什么需要注意哪些事情

阅读(31)

本文为您介绍对红花的养殖方法是什么需要注意哪些事情,内容包括对红花养殖方法的认识,一品红花的养殖方法和管理。对红花的养殖方法是什么需要注意哪些事情对红的学名是朱顶红,它的花朵美丽多姿,开花时能够吸引很多人的关注,适合装点居室、

学习

姬珊瑚怎么养

阅读(33)

本文为您介绍姬珊瑚怎么养,内容包括姬珊瑚怎么养最好,姬珊瑚怎么养成老桩。姬珊瑚怎么养姬珊瑚很常见,不过很多花友并不清楚姬珊瑚怎么养,以下就是给你做的整理,希望对你有用。姬珊瑚的介绍:仙人掌属,俗称鹿角梅,也叫仙人条,商家叫它摇钱树,这名

学习

测绘工程实习报告精选

阅读(22)

本文为您介绍测绘工程实习报告精选,内容包括测绘工程实习报告范文,测绘学生顶岗实习报告,测绘工程实习周记。一、报告的基本要求1、总结必须有情况的概述和叙述,有的比较简单,有的比较详细。这部分内容主要是对工作的主客观条件、有利和不

学习

大学入学征文《大学,你好》精选

阅读(32)

本文为您介绍大学入学征文《大学,你好》精选,内容包括你好大学主题征文怎么写,大学入学征文,你好大学征文通知。在我们平凡的日常里,大家最不陌生的就是征文了吧,征文具有主题鲜明、内容清楚的特点。如何写一篇有思想、有文采的征文呢?以下

学习

盆栽樱桃番茄要怎么种

阅读(29)

本文为您介绍盆栽樱桃番茄要怎么种,内容包括种番茄盆栽全过程,刚买的矮生盆栽番茄种子怎样种。盆栽樱桃番茄要怎么种由于气候适宜樱桃番茄的生长,从每年的七、八月份开始,一直到来年的2月份,都可以吃到口味纯正的露地栽培樱桃番茄。不过要

学习

锦州师范高等专科学校

阅读(30)

本文为您介绍锦州师范高等专科学校,内容包括锦州师范高等专科学校新校区,锦州师范高等专科学校宿舍,锦州师范高等专科学校2023分数线。学校(英语:School),是指教育者有计划、有组织地对受教育者进行系统的教育活动的组织机构。名称起源于民

学习

大班语言活动《点》教案

阅读(33)

本文为您介绍大班语言活动《点》教案,内容包括大班语言我喜欢教案,大班语言福气糕教案,大班语言找朋友教案。作为一位杰出的老师,通常需要准备好一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。如何把教案做到重点突出呢?下面是为大家

学习

测绘工程技术专业就业前景及就业方向

阅读(27)

本文为您介绍测绘工程技术专业就业前景及就业方向,内容包括导航工程就业前景和测绘哪个好,测绘专业研究生就业前景工资待遇,测绘专业就业前景怎样张雪峰。在日常学习、工作和生活中,大家对就业前景都再熟悉不过了吧,下面是为大家整理的测

学习

保护知识产权的演讲稿通用

阅读(24)

本文为您介绍保护知识产权的演讲稿通用,内容包括保护知识产权演讲稿怎么写,保护知识产权演讲稿作文,小学生知识产权演讲稿。一、保护知识产权是什么知识产权保护是指依照知识产权相关法律法规,对侵犯知识产权的行为进行制止和打击,具体表

学习

大学生初入大学的感悟精选

阅读(33)

本文为您介绍大学生初入大学的感悟精选,内容包括大学生刚进入大学的感受,初入大学的感受和体会,大学生初入职场感悟。一、心得体会的写作方法(一)简略写出自己阅读过的书籍或文章的内容,然后写出自己的意见或感想。明确的说,就是应用自己

学习

小学英语知识点

阅读(28)

本文为您介绍小学英语知识点,内容包括小学英语知识点总结,小学英语知识点讲解,小学英语知识点梳理一至六年级。在我们平凡无奇的学生时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

学习

物理复习磁场公式知识点

阅读(31)

本文为您介绍物理复习磁场公式知识点,内容包括高中物理磁场公式总结,物理磁场知识点速记,物理选修3-1磁场公式归纳。在平时的学习中,大家最不陌生的就是知识点吧!知识点就是掌握某个问题/知识的学习要点。为了帮助大家掌握重要知识点,以下

学习

数学中考知识点

阅读(27)

本文为您介绍数学中考知识点,内容包括数学中考知识点大全,数学中考知识点思维导,数学中考知识点及公式。在日常的学习中,是不是经常追着老师要知识点?知识点就是一些常考的内容,或者考试经常出题的地方。那么,都有哪些知识点呢?下面是收集整

学习

蜻蜓知识点

阅读(25)

本文为您介绍蜻蜓知识点,内容包括蜻蜓知识点大全,蜻蜓的10个小知识,关于蜻蜓有哪些知识点。在平平淡淡的学习中,是不是听到知识点,就立刻清醒了?知识点就是学习的重点。掌握知识点有助于大家更好的学习。以下是精心整理的蜻蜓知识点,仅供参

学习

《数学之美》读后感通用

阅读(25)

本文为您介绍《数学之美》读后感通用,内容包括数学之美章节读后感1000字,数学之美读后感初中,数学之美读后感100字。细细品味一本名著以后,想必你有不少可以分享的东西,让我们好好写份读后感,把你的收获感想写下来吧。那么你会写读后感吗?下

学习

小学六年级趣味数学教案通用

阅读(26)

本文为您介绍小学六年级趣味数学教案通用,内容包括小学六年级数学兴趣活动小组计划,小学六年级趣味数学课教案,小学数学六年级上册趣味数学教案。一、趣味数学小知识

学习

语文必考成语

阅读(35)

本文为您介绍语文必考成语,内容包括语文必考成语,小学必考重叠性成语,重叠词成语训练大全。无论是在学校还是在社会中,大家对成语都不陌生吧,成语是语言中经过长期使用,锤炼而形成的固定短语,还记得都学过哪些成语吗?下面是帮大家整理的语文

学习

小学数学学科渗透环境教育计划范文

阅读(28)

本文为您介绍小学数学学科渗透环境教育计划范文,内容包括小学数学学科渗透德育工作计划,小学数学学科渗透工作计划,小学数学教学计划学科分析。光阴的迅速,一眨眼就过去了,我们迎来了新的学习生活,做好教学计划,让自己成为更有竞争力的人吧