关于奥数行程问题中经典问题例题及解析
行程问题是奥数中的重点,也是不少小升初数学考试的重点,不少学校都把行程问题当压轴题,可见学校对行程的重视程度,由于行程题本身题干就很长,模型多样,变化众多,所以对学生来说处理起来很头疼,而这也是学校考察的重点,这可以充分体现学生对题目的分析能力。下面是给大家整理的关于奥数行程问题中问题例题及解析,欢迎阅读!
奥数行程问题中问题例题及解析 1
【例1】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
提示:环形跑道的相遇问题。
【解】:因为相遇前后甲,乙的速度和没有改变,如果相遇后两人和跑一圈用24秒,则相遇前两人和跑一圈也用24秒,方法有二。
【例2】小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
【解】:因为小红的速度不变,相遇的地点不变,所以小红两次从出发到相遇行走的时间不变,也就是说,小强第二次走的时间比第一次少4分钟。(70×4)÷(90-70)=14分钟 可知小强第二次走了14分钟,他第一次走了14+4=18分钟; 两人家的距离:(52+70)×18=2196(米)
【例3】甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米,如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。甲车原来每小时向多少千米?
【解】:设乙增加速度后,两车在D处相遇,所用时间为T小时。甲增加速度后,两车在E处相遇。由于这两种情况,两车的速度和相同,所以所用时间也相同。于是,甲、乙不增加速度时,经T小时分别到达D、E。DE=12+16=28(千米)。由于甲或乙增加速度每小时5千米,两车在D或E相遇,所以用每小时5千米的速度,T小时走过28千米,从而T=28÷5=5.6小时,甲用6-5.6=0.4(小时),走过12千米,所以甲原来每小时行12÷0.4=30(千米)。
奥数行程问题中问题例题及解析 2
例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?
分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:即回来时用了3.5小时。
评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。
例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?
分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?
分析:求时间的问题,先找相应的路程和速度。
解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),
逆水比顺水多需要的时间为:21-11=10(小时)
答:行驶这段路程逆水比顺水需要多用10小时。
例4:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
分析:求平均速度,首先就要考虑总路程除以总时间的方法是否可行。
解答:设从甲地到乙地距离为s千米,则汽车往返用的时间为:s÷48+s÷72=s/48+s/72=5s/144,平均速度为:2s÷5s/144=144/5×2=57.6(千米/时)
评注:平均速度并不是简单求几个速度的平均值,因为用各速度行驶的时间不一样。
例5:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?
分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。
解答:剩下的路程为300-120=180(千米),计划总时间为:300÷50=6(小时),剩下的路程计划用时为:6-120÷40=3(小时),剩下的路程速度应为:180÷3=60(千米/小时),即剩下的路程应以60千米/时行驶。
评注:在简单行程问题中,从所求结果逆推是常用而且有效的方法。
例6:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?
分析:求速度,先找相应的路程和时间,本题中给了以两种方法骑行的结果,这是求路程和时间的关键。
解答:考虑若以10千米/时的速度骑行,在上午11时,距离乙地应该还有10×2=20(千米),也就是说从出发到11时这段时间内,以15千米/时骑行比以10千米/时骑行快20千米,由此可知这段骑行用时为:20÷(15-10)=4(小时),总路程为15×4=60(千米),若中午12时到达需总用时为5小时,因此骑行速度为60÷5=12(千米/时),即若想12时到达,应以12千米/时速度骑行。
例7:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?
分析:求路程,需要速度和时间,题目中来回速度及总时间已知,我们可以选择两种方法:一是求往、返各用多少时间,再与速度相乘,二是求平均速度与总时间相乘,下面给出求往
返时间的方法。
解答:设飞机去时顺风飞行时间为t小时,则有:1500×t=1200×(6-t),2700×t=7200,t=8/3(小时),飞机飞行距离为1500×8/3=4000(千米)
评注:本题利用比例可以更直接求得往、返的时速,往返速度比5:4,因此时间比为4:5,又由总时间6小时即可求得往、返分别用时,在往返的问题中一定要充分利用往返路程相同这个条件。
例8:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。
分析:上坡、平路及下坡的路程相等很重要,平均速度还是要由总路程除以总时间求得。
解答:设这座桥上坡、平路、下坡各长为S米,某人骑车过桥总时间为:s÷4+s÷6+s÷8=s/4+s/6+s/8=13/24s,平均速度为:3s÷13/24s=24/13×3=72/13=5又7/13(秒),即骑车过桥平均速度为5又7/13秒。
评注:求平均速度并不需要具体的路程时间,只要知道各段速度不同的路程或时间之间的关系即可,另外,三段或更多路的问题与两段路没有本质上的差别,不要被这个条件迷惑。
例9:某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来一辆18千米/时的拖拉机把他送到农场,总共用了5.5小时,问:他步行了多远?
解答:如果5.5小时全部乘拖拉机,可以行进:18×5.5=99(千米),其中99-60=39(千米),这39千米的距离是在某段时间内这个人在行走而没有乘拖拉机因此少走的距离,这样我们就可以求行走的时间为39÷(18-5)=3(小时),即这个走了3个小时,距离为5×3=15(千米),即这个人步行了15千米。
转载请注明出处学文网 » 关于奥数行程问题中经典问题例题及解析