《矩形的判定》初中数学说课稿精选

《矩形的判定》初中数学说课稿(精选10篇)

作为一位无私奉献的人民教师,常常要根据教学需要编写说课稿,借助说课稿可以有效提高教学效率。那么问题来了,说课稿应该怎么写?下面是帮大家整理的《矩形的判定》初中数学说课稿,希望能够帮助到大家。

《矩形的判定》初中数学说课稿 1

一.学生情况分析

学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。

二.教学任务分析

教学目标:

知识目标:

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

能力目标:

1.通过四边形的从属关系渗透集合思想。

2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。

情感与价值观

通过理解四种四边形内在联系,培养学生辩证观点

教学重点:正方形的性质的应用。

教学难点:正方形的性质的应用。

三、教学过程设计

课前准备

教具准备: 一个活动的平行四边形木框、白纸、剪刀。

学生用具:白纸、剪刀

教学过程设计分成四分环节:

第一环节:巧设情境问题,引入课题

第二环节:讲授新课

第三环节:新课小结

第四环节:布置作业

第一环节 巧设情境问题,引入课题

进入正题,提出本节课的研究主题正方形

第二环节 讲授新课

主要环节

(1)呈现两种通过不同途径得到正方形的过程,给正方形下定义

(2)讨论正方形的性质

(3)通过练习加强对正方形性质的理解

(4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。

(5)寻找正方形的判定方法

目的:

1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。

2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。

大致教学过程

呈现一个平行四边形变成正方形的全过程。(演示)

由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形。

这个变化过程,可用如下***表示

由此可知:正方形是一组邻边相等的矩形。即:一组邻边相等的矩形叫做正方形。

这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形。

这个变化过程,也可用***表示

你能根据上面的变化过程,给正方形下定义吗?

一组邻边相等的平行四边形是菱形。正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形。

由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形。

因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质。

正方形的性质:

边:对边平行、四边相等

角:四个角都是直角

对角线:对角线相等,互相垂直平分,每条对角线平分一组对角。

正方形是轴对称***形吗?如是,它有几条对称轴?

正方形是轴对称***形,它有四条对称轴,即:两条对角线,两组对边的中垂线。

例题

[例1]如***,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数。

分析:本题是正方形的性质的直接应用。正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性。

解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90。正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45

拿出准备好的剪刀、白纸来做一做

将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)

只要保证剪口线与折痕成45角即可。因为正方形的.两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形。

正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?

正方形、矩形、菱形及平行四边形四者之间有什么关系呢?

它们的包含关系如***:

此***给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?

先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形。

由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。

第三环节 课堂练习

教材 随堂练习1,2

第四环节 课时小结

正方形的定义:一组邻边相等的矩形。

正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)

第五环节 课后作业

课本习题4.7 1,2,3。

四.教学设计反思

在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。

为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定***形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。

《矩形的判定》初中数学说课稿 2

教学目标:

1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想

教法设计:

观察、启发、总结、提高,类比探讨,讨 论分析,启 发式。

教学重点:

矩形的判定。

教学难点:

矩形的 判定及性质的综合应用。

教具学具准备:

教具(一个活动的平行四边形)

教学步骤:

一.复习提问:

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

二.引入新课

设问:1.矩形的判定。

2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定)。除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法。

方法1:有三个角是直角的四边形是矩形。(并让学生写出推理过程。)

矩形判定方法2:对角钱相等的平行四边形是矩形。(分析判定方法2和学生 一道写出证明过程。)

归纳矩形判定方法(由学生小 结):

(1)一个角是直角的平行四边形.

(2)对角线相等的平行四边形。

(3)有三个角是直角的四边形。

2 .矩形判定方法的实际应用

除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值。

3.矩形知识的综合应用。(让学生思考,然后师生共同完成)

例:已知 的对角线 , 相交于

,△ 是等边三角形, ,求这个平行

四边形的面积(***2)。

分析解题思路:(1)先判定 为矩形。(2)求 出 △ 的直角边 的长。(3)计算 。

三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等。判定方法3的两个条件是:①是四边形,②有三个直 角。

矩形的.判定方法有哪些?

一个角是直角的平行四边形

对角线相等的平行四边形-是矩形。

有三个角是直角的四边形

(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理。

补充例题

例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,

求证:四边形EFGH为矩形

分析:利用对角线互相平分且相等的四边形是矩形可以证明

证明:∵ABCD为矩形

AC=BD

AC、BD互相平分于O

AO=BO=CO=DO

∵AE=BF=CG=DH

EO=FO=GO=HO

又HF=EG

EFGH为矩形

例2:判断

(1)两条对 角线相等四边形是矩形()

(2)两条对角线相等且互相平分的四边形是矩形()

(3)有一个角是 直角的四边形是矩形( )

(4)在矩形内部没有和四个顶点距离相等的点()

分析及解答:

(1)如***(1)四边形ABC D中,AC=BD,但ABCD不为矩形,

(2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形

(3)如***(2),四边形ABCD中,B=90,但ABCD不为矩形

(4)矩形 对角线的交点O到四个顶点距离相等,如***(3),

《矩形的判定》初中数学说课稿 3

一、教材分析(说教材):

1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

2、教学目标:

1.通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

2.通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

3.使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

4.教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程环节一:

创设情境、导入新课

通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

回顾:

1、矩形的定义:有一个角是直角的平行四边形叫矩形

2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。

3、平行四边形的性质:

平行四边形的性质

平行四边形判定

平行四边形两组对边分别相等

平行四边形两组对边分别平行

两组对边分别平行(或相等)的四边形是平行四边形

平行四边形一组对边平行且相等

平行四边形对角线互相平分

一组对边平行且相等的四边形是平行四边形

对角线互相平分的四边形是平行四边形

平行四边形两组对角分别相等

两组对角分别相等的四边形是平行四边形

环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的'喜悦。

定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

环节三:应用辨析,巩固定理

总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

二、填空题:

1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。

2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:

判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用***完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

环节四:开放训练,发散思维

变式训练

如***,△ABC中,点O是AC边上的一个动点,

过点O作直线MN∥BC,设MN交∠BCA的

平分线于点E,交∠BCA的外角平分线于点F。

(1)求证:EO=EF

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。

以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!

《矩形的判定》初中数学说课稿 4

一.教材分析与处理

1、教材的地位和作用;

本课是八年级(下)第19章第2节《矩形的判定》,主要研究矩形的判定方法,它不仅是本节的重点,也是以后学习正方形和圆等知识的基础,通过观察试验,归纳证明,培养学生的推理能力和演绎能力,为后面的学习奠定基础。

2、教学目标:

(1)知识技能:

A会证明矩形的两个判定定理。

B会根据矩形的定义和判定定理判定一个四边形是矩形,并能进行有关论证和计算。

(2)数学思考:

经历探究矩形判定条件的过程,通过观察猜想证明归纳总结,发展学生的合情推理能力,培养主动探究的习惯。

(3)解决问题:

A探索并掌握矩形的判定方法。

B利用矩形的判定解决问题。

(4)情感态度和价值观

A让学生在探索过程中加深对矩形的理解,激发他们的求知欲望。

B进一步体会矩形的结构美和应用美。

3、教学重点和难点:

(1)重点:矩形的判定方法。

(2)难点:合理应用矩形的判定定理解决问题,

4、教材处理:

根据教学目标,为突出重点,突破难点,在探索矩形的判定定理1时,用教具演示,四边形的两条对角线在保持互相平分的前提下进行伸缩,当他们的长度相等时平行四边形变为矩形。给学生以直观感受,印象深刻,本节课利用学生自制矩形献给母亲的礼物,为检测礼物是否为矩形,让学生从不同角度思考,提出不同检测方法,判定每种方法的数学原理,让学生体会数学来源于生活又应用于生活的理念,在探索矩形的.判定定理2时,先让学生观察动画按顺序画出矩形,含有三个直角的四边形观察猜想此四边形为矩形,再证明这个猜想。将106页练习2作为例题,从不同角度探讨此题的解题思路,拓展学生的思维空间。

二、教学方法与教学手段:

1、教学方法:本节课通过学生动手实践来学习数学,渗透数学思想,交给学生解题方法和解题技巧。让学生体会基础知识是解题方法的能源。联想想象直觉分析与综合等思维方法是解题的关键,比较法化规法,抽象概括法,特殊化方法等数学思想方法是解题方法与技巧的灵魂,注重解题研究是提高解题能力的有效途径。

2、教学手段:通过学生自制学具,动手操作和课件可以让学生验证体会自己的想法,提高学生的动手实践和猜想能力,拓展学生的思维空间。

三、教学程序:

(一)引课:教师通过提问和矩形定义,列表对比平行四边形和矩形的性质,让学生回忆平行四边形的判定。引出本节课题矩形的判定。目的在比较突出矩形独有的四个角都是直角和对角线相等的两个性质。为探索矩形的判定做好铺垫。

(二)教学过程:

1、先用教具演示四边形的两条对角线在保持相互平分的前提下进行伸缩,当他们的长度相等时让学生观察猜想平行四边形变成矩形并引导学生证明,目的激发学生的探究兴趣,体会证明的必要性。

2、研究工人师傅检测门窗方法的数学原理,让学生思考不同检测方法,目的是开拓学生的思维空间。

3、接着让学生按顺序画出含有三个直角的四边形,观察探索矩形的判定定理2,在证明这个猜想,目的是通过学生动手画***实践观察,猜想,验证,感受到动手操作,猜想的乐趣培养学生的猜想能力和推理能力。

4、总结矩形的三个判定方法,并应用这3个方法做10道判定题,目的是进一步理解强化矩形的三个判定方法。

5、例题和随堂练习,目的是引导学生关注判定定理的应用,学会思维提高分析能力,体会注重解题研究是提高解题能力的有效途径。

6、小结:学生对本节课的体会,收获进行总结。

其目的是:(1)加深学生对知识的理解,促进学生课堂的反思。

(2)让学生理解数学思想和方法。

(3)让学生感受学有所成的喜悦,

7、作业:必做题和选做题。

其目的是:(1)便于发现问题,及时查缺补漏。

(2)巩固提高使各层次的学生得到不同的发展

《矩形的判定》初中数学说课稿 5

一、课堂引入

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形.

矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

二、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;(×)

(2)有四个角是直角的`四边形是矩形;(√)

(3)四个角都相等的四边形是矩形;(√)

(4)对角线相等的四边形是矩形;(×)

(5)对角线相等且互相垂直的四边形是矩形;(×)

(6)对角线互相平分且相等的四边形是矩形;(√)

(7)对角线相等,且有一个角是直角的四边形是矩形;(×)

(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)

指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个***条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

解:∵ 四边形ABCD是平行四边形,

∴AO=AC,BO=BD.

∵ AO=BO,

∴ AC=BD.

∴ ABCD是矩形(对角线相等的平行四边形是矩形).

在Rt△ABC中,

∵ AB=4cm,AC=2AO=8cm,

∴BC=(cm).

例3(补充)已知:如***(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

分析:要证四边形EFGH是矩形,由于此题目可分解出基本***形,如***(2),因此,可选用“三个角是直角的四边形是矩形”来证明

《矩形的判定》初中数学说课稿 6

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画***工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形, 堂课我们就来研究一种特殊的平行四边形矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示***,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

矩形性质定理1:矩形的'四个角都是直角.

矩形性质定理2:矩形对角线相等.

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半.

(这实际上是 △的一个重要性质,即 △斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1 已知如***1 矩形 的两条对角线相交于点, , ,求矩形对角线的长.(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如***.

(2)矩形性质.

1.具有平行四边形的所有性质.

2.特有性质:四个角都是直角,对角线相等.

3.思考题:已知如***, 是矩形 对角线交点, 平分 , ,求 的度数

八、布置作业

教材P158中2、5,P195中7.

九、板书设计

十、随堂练习

教材P146中1、2、3、4

《矩形的判定》初中数学说课稿 7

教学目标

1.使学生掌握分组后能运用提公因式和公式法把多项式分解因式;

2.通过因式分解的综合题的教学,提高学生综合运用知识的能力.

教学重点和难点

重点:在分组分解法中,提公因式法和分式法的综合运用.

难点:灵活运用已学过的因式分解的各种方法.

教学过程设计

一、复习

把下列各式分解因式,并说明运用了分组分解法中的什么方法.

(1)a 2-ab+3b-3a;(2)x 2-6xy+9y 2-1;

(3)am-an-m 2 +n 2;(4)2ab-a 2-b 2 +c 2 .

解(1) a 2-ab+3b-3a

=(a 2-ab)-(3a-3b)

=a(a-b)-3(a-b)

=(a-b)(a-3);

(2)x 2-6xy+9y 2-1

=(x-3y) 2-1

=(x-3y+1)(x-3y-1);

(3)am-an-m 2 +n 2

=(am-an)-(m 2-n 2 )

=a(m-n)-(m+n)(m-n)

=(m-n)(a-m-n);

(4)2ab-a 2-b 2 +c 2

=c 2-(a2+b2-2ab)

=c 2-(a-b) 2

=(c+a-b)(c-a+b).

第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.

第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式

继续分解因式.

第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.

第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式

,第四项与这一组再运用平方差公式分解因式.

把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运

用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.

这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.

二、新课

例1把分解因式.

问:根据这个多项式的特点怎样分组才能达到因式分解的目的?

答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法.

解方法一

方法二

例2把分解因式.

问:观察这个多项式有什么特点?是否可以直接运用分组法进行因式分解?

答:这个多项式的各项都有公式因ab,可以先提取这个公因式,再设法运用分组法继续分解因式.

解:

=

=

=

=

例3把45m2-20ax2+20axy-5ay2分解因式.

分析:这个多项式的各项有公因式5a,先提取公因式,再观察余下的因式,可以按:一、三”分组原则进行分组,然后运用公式法分解因式.

解45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)

=5a[9m2-(4x2-4xy+y2)]

=5a[(3m2)-(2x-y) 2]

=5a(3m+2x-y)(3m-2x+y).

例4把2(a2-3mn)+a(4m-3n)分解因式.

分析:如果去掉多项式的括号,再恰当分组,就可用分组分解法分解因式了.

解2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an

=(2a2-3an)+(4am-6mn)

=a(2a-3n)+2m(2a-3n)

=(2a-3n)(a+2m).

指出:如果给出的多项式中有因式乘积,这时可先进行乘法运算,把变形后的多项式按照分组原则,用分组分解法分解因式.

三、课堂练习

把下列各式分解因式:

(1)a2+2ab+b2-ac-bc;(2)a2-2ab+b2-m2-2mn-n2;

(3)4a2+4a-4a2b+b+1;(4)ax2+16ay2-a-8axy;

(5)a(a2-a-1)+1;(6)ab(m2+n2)+mn(a2+b2);

答案:

(1)(a+b)(a+b-c);(2)(a-b+m+m)(a-b-m-n);

(3)(2a+1)(2a+1-2ab+b);(4)a(x-4y+1)(x-4y-1);

(5)(a-1) 2 (a+1);?    (6)(bm+an)(am+bn).

四、小结

1.把一个多项式因式分解时,如果多项式的各项有公因式,就先提出公因式,把原多项式变为这个公因式与另一个因式积的形式.如果另一个因式是四项(或四项以上)的多项式,再考虑用分组分解法因式分解.

2.如果已知多项式中含有因式乘积的项与其他项之和(或差)时(如例3),先去掉括号,把多项式变形后,再重新分组.

五、作业

1.把下列各式分解因式:

(1)x3y-xy3;(2)a4b-ab4;

(3)4x2-y2+2x-y;(4)a4+a3+a+1;

(5)x4y+2x3y2-x2y-2xy2;(6)x3-8y3-x2-2xy-4y2;

(7)x2+x-(y2+y);(8)ab(x2-y2)+xy(a2-b2).

2.已知x-2y=-2b=-4098,求2bx2-8bxy+8by2-8b的值.

答案:

1.(1)xy(x+y)(x-y);(2)ab(a-b)(a2+ab+b2);

(3)(2x-y)(2x+y+1);(4)(a+1) 2 (a2-a+1);

(5)xy(x+2y)(x+1)(x-1);(6)(x2+2xy+4y2)(x-2y-1);

(7)(x-y)(x+y+1);(8)(ax-by)(bx+ay).

2.原式=2b(x-2y+2)(x-2y-2)当x-2y=-2,b=-4098时,原式的值=0.

课堂教学设计说明

1.突出“通法”的作用.

对于含四项的多项式,可以根据所给的多项式的特点,常采取“二、二”分组或“一、三”分组的方法进行因式分解,这是运用分组法把多项式分解因式的通法,是带有规律性和程序性的.解题思路,学生应切实掌握.安排例1的目的是:引导学生运用分组的通法把一个含有六项的多项式分解因式,促使学生能举一反三,触类旁通.

2.加强各种方法的纵横联系.

把分组分解法与提公因式法和公式法之间结合为一体,进行纵横联系,综合运用,考察学生掌握因式分解的方法和技能的状况是这节课教学设计的目标.通过讨论例3,引导学生综合应用三种方法把多项式分解因式,以开发学生解题思路的变通性和灵性活,对于启迪学生的思维和开阔学生的视野起到重要作用.

3.打通相反的思维过程.

因式分解与整式乘法是相反的变形,也是相反的思维过程,学生在学习多项式的因式分解时,也应当适当联系整式的乘法.安排例4,目的是引导学生认识到,在把多项式因式分解时,如果给出的多项式出现了有因式乘积的项,但又不能提取公因式,这时就需要进行乘法运算,把变形后的多项式重新分组,再分解因式,从而启发学生在学习 数学时,应善于对数学知识和方法融汇贯通习惯于正向和逆向思维.

探究活动

系数为1的型的二次三项式同学们已经会分解因式了,那么二次项系数不是1的二次三项式怎么分解呢?如:

1.;2. .

有兴趣的同学可以模仿型式子的因式分解试着把上面两式分解因式,你能总结出规律吗?

答案:

1. ; 2. .

规律:二次项系数不是1的二次三项式分解因式时,若满足下列条件,则可将其分解为:

可分解为,即

可分解为,即

,,,满足,即

按斜线十字交叉相乘的积之和若与一次项系数相等,则可分解因式,

第一个因式由第一行的两个数组成

第二个因式由第二行的两个数组成

分解结果为:

《矩形的判定》初中数学说课稿 8

一、教学目标

1. 知识与技能:

(1 ).理解并掌握矩形的性质定理及推论;

(2 ).会用矩形的性质定理及推论进行推导证明;

(3 ).会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算.

2. 过程与方法:

(1). 通过教学过程中同学的测量、交流、讨论,并运用课件的直观形象性,加深对矩形性质定理及推论的理解和应用.

(2). 体验矩形性质定理及推论的发现过程,探索证明性质定理及推论的方法.

(3). 感受新旧知识及几何代数之间的紧密联系.

3. 情感态度与价值观:

(1).在观察、测量、猜想、归纳、推理的过程中,体.验数学活动充满探索性和创造性,感受证明的必要性、证明过程的严谨性及结论的确定性。

(2).树立用观察、实验、猜想、归纳出结论,并用逻辑推理证明定理的意识.

(3).进一步认识软件《几何画板》的作***、测量功能,体验智能工具的快速、准确及其规范..

(4).从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的`,培养

学生辨证唯物主义观点。

(5).在讨论和回答问题过程中,敢于发表自己的观点,尊重他人的见解,能从交流中获益.

二、学习重点、难点:

学习重点: 矩形性质定理及推论.

学习难点: 矩形性质定理、推论及特殊三角形的性质的综合应用.

三、教学方法及手段:

教学方法:探究发现法为主,辅以讲授法.

教学手段:PPT及几何画板演示辅以板书.

四、教学设计:

本节课依据新课标“在第三学段(7——9年级)中,学生将经历探索物体与***形的基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、对称、相似的基本性质,体会证明的必要性,能证明三角形和四边性的基本性质,掌握基本的推理技能”的要求。首先课前让学生以小组为单位调查实际生产生活中应用矩形的实例,培养学生的小组协作和实际调查能力,课上从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望;教学过程中充分利用学生手中的矩形书本和测量工具以及几何画板课件演示,让学生通过观察、测量得出矩形性质后,再引导学生进行推理证明及应用,帮助他们在自主探索和合作交流过程中真正理解和掌握矩形性质定理及推论,体验数学学习过程中的探索性和挑战性以及推理的严谨性。通过正确,帮助学生树立合作意识和学好数学的自信心。

《矩形的判定》初中数学说课稿 9

<title>  从不同方向看</title>

一、教学目标:

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2 。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

二、教学重点、难点和疑点

1.重点:正方形的性质。

2.难点:正方形性质的应用。

3.疑点:平行四边形,矩形,菱形,正方形之间的共性,特性及从属关系(可以通过画***,简单的集合关系***,举反例等来说明)。

三、教学方法:

归纳法。

四、教学过程:

(一)复习提问

1.让学生叙述平行四边形、矩形、菱形的定义和它们的特殊性质。

2.说明平行四边形,矩形,菱形的内在联系。

(二)引入新课

矩形和菱形都是特殊的平行四边形,那么更加特殊的平行四边形是什么***形?它又有什么特殊性质呢?这一堂课就来学习这种特殊的***形正方形(写出课题)。

(三)讲解新课

1.正方形的定义

因为学生对正方形很熟悉,所以可以直接介绍正方形的定义。

有一组邻边相等,有一个角是直角的平行四边形叫做正方形。

教师问:正方形是在什么前提下定义的?学生答:平行四边形。

教师再问:包括哪两层意思?

学生答:(1)有一组邻边相等的平行四边形(菱形)。

(2)并且有一个角是直角的平行四边形(矩形)。

画***表示正方形与矩形,正方形与菱形的从属关系如***4-49 。

2.正方形的性质

因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,

所以它具有这些***形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的'两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:

(1)正方形与矩形,菱形,平行四边形的关系如***4-52 。

(2)正方形的性质:

①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

教学反思:正方形是特殊平行四边形的综合。是一个回顾与总结与发现的一节课。组织好这节课对让学生会归纳总结发现是比较重要的。

《矩形的判定》初中数学说课稿 10

学习目标:

1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系

2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、

3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力

学习重难点:

重点:矩形的性质定理

难点:灵活应用矩形的'性质进行有关的计算与证明

课前准备

教具准备:活动平行四边形框架、教师准备PPT课件

教学过程:

知识回顾

1、什么叫平行四边形?

2、平行四边形有哪些性质?

【设计意***】:

通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫

合作探究一:矩形的定义

阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?

用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下***,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的***形是什么***形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?

【设计意***】:

通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维

归纳:有一个角是直角的平行四边形叫做矩形、

合作探究二:矩形的性质定理

1、自主完成18页的观察与思考,通过实际操作回答提出的问题

2、小组合作:完成对性质的证明过程

【设计意***】:

通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础

矩形的性质定理1:矩形的四个角都是直角

矩形的性质定理2:矩形的两条对角线相等

合作探究三:直角三角形的性质定理3

设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段

(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?

【设计意***】:

根据***形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生***完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的必要性

结论:直角三角形斜边上的中线等于斜边的一半

例题讲解:

例1、如***,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?

当堂检测:

1、矩形具有而平行四边形不具有的性质()

(A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分

2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线

(1)若BD=3㎝,则AC=㎝

(2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝

3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长

4、工人师傅做铝合金窗框分下面三个步骤进行:

(1)先截出两对符合规格的铝合金窗料(如***1),使AB=CD,EF=GH;

(2)摆放成如***(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;

(3)将直角尺靠紧窗框的一个角(如***3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如***4),说明窗框合格,这时窗框是____,根据的数学道理是________________。

课堂小结:

请说出你本节课的收获,与大家一块分享!!

作业:

课本P、20第2题

板书设计:

xxx

转载请注明出处学文网 » 《矩形的判定》初中数学说课稿精选

学习

数学全等三角形的知识点

阅读(29)

本文为您介绍数学全等三角形的知识点,内容包括三角形全等五个判定方法,全等三角形知识点归纳总结,证三角形全等的方法知识点。在平时的学习中,相信大家一定都接触过知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内

学习

数学教案:等腰三角形的判定精选

阅读(25)

本文为您介绍数学教案:等腰三角形的判定精选,内容包括数学教案等腰三角形,等腰三角形的判定教案沪科版,等腰三角形的性质定理和判定定理。作为一名无私奉献的老师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。快来参考教

学习

关于梦想格言精选

阅读(24)

本文为您介绍关于梦想格言精选,内容包括收获梦想的名言或格言,关于梦想的格言100字,关于梦想的名言佳句简短。在日复一日的学习、工作或生活中,大家最不陌生的就是格言了吧,格言是指导人生走向成功之路的法宝,时刻激励人生取得进步。还苦于

学习

关于梦想的作文

阅读(34)

本文为您介绍关于梦想的作文,内容包括关于梦想的作文通用23篇,梦想作文500字左右,关于梦想的作文3800字。在学习、工作或生活中,大家总少不了接触作文吧,作文是从内部言语向外部言语的过渡,即从经过压缩的简要的、自己能明白的语言,向开展的

学习

幼儿园家长意见精选90条

阅读(29)

本文为您介绍幼儿园家长意见精选90条,内容包括幼儿园家长意见怎么写,幼儿园家长意见征求表,幼儿园家长意见最精简20字。幼儿园家长意见(精选90条)

学习

家长对幼儿园意见精选100条

阅读(156)

本文为您介绍家长对幼儿园意见精选100条,内容包括家长对幼儿园意见,家长对幼儿园意见范文,家长对幼儿园意见建议20字。家长对幼儿园意见(精选100条)

学习

华南农业大学宿舍环境条件怎么样

阅读(25)

本文为您介绍华南农业大学宿舍环境条件怎么样,内容包括华南农业大学研究生宿舍条件怎样,华南农业大学泰山宿舍15栋,华南农业大学启林南校区宿舍。大学就是我们的第二个家,高考填报志愿时,华南农业大学宿舍条件怎么样、有空调吗是广大同学

学习

三角形教案精选

阅读(22)

本文为您介绍三角形教案精选,内容包括全等三角形的判定教案,三角形教案,三角形的性质教案范例6篇。在教学工作者开展教学活动前,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!下面是整理的三角形

学习

2021全国新高考Ⅰ卷高考作文范文

阅读(40)

本文为您介绍2021全国新高考Ⅰ卷高考作文范文,内容包括2021高考语文作文全国新高考卷一,2021全国新高考卷1高考作文怎么写,高考作文2021新高考卷。全国新高考Ⅰ卷试题作文内容:阅读下面的材料,根据要求写作。

学习

2022全国新高考Ⅰ卷高考满分作文

阅读(30)

本文为您介绍2022全国新高考Ⅰ卷高考满分作文,内容包括2022高考全国满分作文原文,2022届高考英语满分作文必练必背,2022高考新一卷满分作文。在日常学习、工作抑或是生活中,大家一定都接触过作文吧,通过作文可以把我们那些零零散散的思想,

学习

2022全国新高考I卷高考作文精选

阅读(35)

本文为您介绍2022全国新高考I卷高考作文精选,内容包括2020年全国iii卷高考作文,2022高考作文押题10大主题,2022高考作文热点预测及范文。在学习、工作、生活中,大家总少不了接触作文吧,借助作文可以提高我们的语言组织能力。作文的注意事

学习

五年级《体积和体积单位》教学设计

阅读(34)

本文为您介绍五年级《体积和体积单位》教学设计,内容包括体积与体积单位五年级教案,体积和体积单位教学设计,小学数学五年级体积单位教学设计。在教学工作者开展教学活动前,常常要根据教学需要编写教学设计,教学设计是一个系统化规划教学

学习

实用的财务述职报告

阅读(29)

本文为您介绍实用的财务述职报告,内容包括财务个人述职报告优秀范文10篇,财务述职报告2021范文,财务人员晋升述职报告范文。在经济发展迅速的今天,接触并使用报告的人越来越多,其在写作上有一定的技巧。那么什么样的报告才是有效的呢?以下

学习

关于体积的数学日记精选

阅读(23)

本文为您介绍关于体积的数学日记精选,内容包括测量不规则物体体积日记,关于体积的数学日记,测量土豆体积的数学日记带。转眼一天又过去了,心中一定有不少感想,让我们今天做个总结,写一篇日记吧。日记怎么写才合适呢?下面是帮大家整理的关于

学习

数学教案:等腰三角形的判定精选

阅读(25)

本文为您介绍数学教案:等腰三角形的判定精选,内容包括数学教案等腰三角形,等腰三角形的判定教案沪科版,等腰三角形的性质定理和判定定理。作为一名无私奉献的老师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。快来参考教

学习

初中数学定理公式总结

阅读(26)

本文为您介绍初中数学定理公式总结,内容包括初中数学定理公式大全完整版,初中数学删除的定理公式,初中数学课外拓展公式定理。总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它可以给

学习

初中数学解题方法:证明弧相等的方法

阅读(22)

本文为您介绍初中数学解题方法:证明弧相等的方法,内容包括初中数学证明角相等的方法,平行弦所夹的弧相等怎么证明,怎么证明同弧所对的角相等。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数

学习

人教版初中数学教案怎么写

阅读(26)

人教版初中数学教案怎么写7篇学习数学还可以培养学生的自主、合作和探究能力。而很多数学问题都是通过学生动手,再观察,应用已学知识去推导,从而得到新的结论和公式。下面是为大家整理的关于人教版初中数学教案怎么写,欢迎大家来阅读。人教

学习

人教版初中数学上册教案范文总汇

阅读(27)

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是为大家收集来看有关数学的教案,希望对你们有所帮助,初中数学上册教

学习

人教版初中数学圆锥的认识教案范文合集总汇

阅读(24)

本课内容是九年级义务教育课程标准实验教材(人教版)六年级下册第二章第二小节第一部分《圆锥的认识》。这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。下面就是给大家带来的人教版数学六年级《圆锥的认识》教

学习

初中数学老师实习日记

阅读(24)

本文为您介绍初中数学老师实习日记,内容包括数学老师实习日记10篇,大学生教师实习日记初中数学,初中数学教育实习日记。一天的时间眼看就要结束了,这一天里,大家身边一定有一些有趣的见闻吧,何不趁现在赶紧写一篇日记。怎样写日记才更能吸

学习

初中数学简单的统计知识点

阅读(26)

本文为您介绍初中数学简单的统计知识点,内容包括初中数学知识点统计总结手写,初中数学统计与概率练习题,初中数学统计概率知识点归纳。漫长的学习生涯中,是不是听到知识点,就立刻清醒了?知识点就是掌握某个问题/知识的学习要点。想要一份整