《等比数列》说课稿范文精选

《等比数列》说课稿范文(精选10篇)

作为一位无私奉献的人民教师,常常要写一份优秀的说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。如何把说课稿做到重点突出呢?下面是帮大家整理的《等比数列》说课稿范文,仅供参考,希望能够帮助到大家。

《等比数列》说课稿 1

一、教材分析

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2.从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3.学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

三、过程分析

学生是认知的`主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格,国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

设计意***:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意***:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

设计意***:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意***:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

3.类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意***:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

对不对?这里的q能不能等于1?等比数列中的公比能不能为

1q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意***:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

4.讨论交流,延伸拓展

《等比数列》说课稿 2

一、教材分析

《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。

二、学情分析

在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运

用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

三、教学目标分析:

知识与技能目标:

(1)能够推导出等比数列的前n项和公式;

(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求

过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精*,磨练思维品质,从中获得成功的体验。

四、重难点的确立

《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用,而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

五、教学方法

为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

六、教学过程

为达到本节课的教学目标,我把教学过程分为如下6个阶段:

1、创设情境:

创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍。假如你是高老庄集团企划部的高参,请你帮八戒决策,这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活。

2、探究问题,讲授新课:

根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的`另一形式。

3、例题讲解:

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:

1)例1是公式的直接应用,目的是让学生熟悉公式会合理的选用公式

2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.

4、形成性练习:

练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

5、课堂小结

本节课的小结从以下几个方面进行:(1)等比数列的前n项和公式

(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。

6、作业布置

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。

《等比数列》说课稿 3

一、教材分析

1、从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的"错位相减法"是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

设计意***:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的.积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意***:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的"无用功",急急忙忙地抛出"错位相减法",这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

2、师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

设计意***:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变"加"为"减",在教师看来这是"天经地义"的,但在学生看来却是"不可思议"的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意***:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意***:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意***:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

设计意***:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

5、变式训练,深化认识

首先,学生***思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意***:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能

设计意***:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意***:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意***:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习

必做:P129练习1、2、3、4

选作:

(2)"远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"这首中国古诗的答案是多少?

设计意***:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用"问题――探究"的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

《等比数列》说课稿 4

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用***形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用***形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了***形中隐藏的数的规律,今天我们继续研究有关数与***形之间的联系。(板书课题:数与形)

【设计意***】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?我们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的`,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件*秘的法宝,你们也想知道吗?

【设计意***】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?()。

3.看到这儿,你发现什么规律了吗?

4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6.尝试练习

【设计意***】将复杂的数量运算转化为简单的***形面积计算,转繁为简,转难为易,引导学生探索数与***形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1.感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的圆形***和线段***,若没有学生提出,教师自己提出。)

2.利用线段***直观感受相加之和等于“1”。

(1)书本上有两幅***,我们一起来看看(课件出示)。一幅是圆形***,一幅是线段***,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意***】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精*。

3.课堂小结。

对于这种借用***形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4.举一反三。

其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段***等。)

《等比数列》说课稿 5

教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题。

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

教学建议

教材分析

(1)知识结构

等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究***像,又给出等比中项的概念,最后是通项公式的.应用。

(2)重点、难点分析

教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点。

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义,也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的***象。

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

《等比数列》说课稿 6

一、教材分析

从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备。

就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到。

就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精*,是培养学生应用意识和数学能力的良好载体。

教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。

二、教学目标

依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

知识与技能目标:理解等比数列的前n项和公式的'推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点

重点:等比数列的前 项和公式的推导及其简单应用。从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力。

突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→ 错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度。

难点:等比数列的前 项和公式的推导。从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物。

突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。

《等比数列》说课稿 7

一、教材分析:

等比数列的前n项和是高中数学必修五第二章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。

二、教学目标

根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:

1、知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。

2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

3、情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

三、教学重点和难点

重点:等比数列的前项和公式的推导及其简单应用。

难点:等比数列的前项和公式的推导。

重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。

四、教法学法分析

通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,

五、教学过程

(一)创设情境,引入新知

从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?

关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?

(二)师生讨论、探究新知

总结归纳:当q=1时,Sn=na1

当q≠1时,

公式说明:①对等比数列{an}而言,a1,an,Sn,n,q知三可求二②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;③错位相减的思想方法。

(三)例题讲解,形成技能

例1:等比数列{an}中,

①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

③已知a1=2,S3=26,求q。

通过例题一,渗透知三求二的.思想。

练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。

例2、等比数列{an}中,已知a1=3,S3=9,求q,an。

练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。

通过练习得出等比数列前项和的一个性质:成等比数列。

例3:(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。

首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。

思考:求和:1+a+a2+a3+…+an

(四)课堂小结

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

『设计意***:以此培养学生的口头表达能力,归纳概括能力。』

六、板书设计

七、课后记

本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中***设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。

《等比数列》说课稿 8

教学目标:

1、通过***形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。

2、培养学生利用***形来分析问题、解决问题的意识和能力。

3、重视利用***形来分析题意,理清思路,提高解决问题的能力

一、创设情景,导入新课

计算出结果。

二、探索交流,解决问题

1、教学例2

计算

从第二个数开始,每个数是前一个数的

我一个一个加下去看看,答案好像有点规律。加下去,等号右边的'分数越来越接近于1。

可以画个***来帮助思考。用一个圆或一条线段来表示“1”。

从***上可以看出,这些分数不断加下去,总和就是1。

2、渗透极限思想。

如果不停地加下去,

1、猜一猜“和”是多少?

2、请用“形”来解释这个结果。

3、反馈:

如果不停地加下去,空白部分会怎么样?

那的结果怎么样?(无限接近1。)

运用知识

你能用所学知识解决下列问题吗?

我是这样想的

所以原式的结果是1。

、布置作业

作业:第110页练习二十二,第3题、第4题、第5题。

《等比数列》说课稿 9

一、教学背景分析

1.教学内容分析

本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精*,是提高数学文化素养和培养学生应用意识的良好载体。

2.学情分析

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。

二、教学目标

依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:

1.知识与技能目标: 理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。

2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。

3.情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。

三、重点,难点

教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。

教学难点:公式的推导思想方法及公式应用中q与1的关系。

四、教学方法

启发引导,探索发现,类比。

五、 教学过程

(一)借助数学文化背境提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

【设计意***】:设计这个数学文化背境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容也紧扣本节课的主题与重点。

问题1:同学们,你们知道西萨要的是多少粒小麦吗?

引导学生写出麦粒总数“等比数列的前n项和”

(二)师生互动,探究问题

问题2:“等比数列的前n项和”

有些学生会说用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)

问题3:同学们,我们来分析一下这个和式有什么特征?

(学生会发现,后一项都是前一项的2倍)

问题4:如果我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:

“等比数列的前n项和”

比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)

问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:“等比数列的前n项和”

【设计意***】:这五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现上述解法,也让学生感受到这种方法的*奇。

问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?

【设计意***】:经过繁难的计算之苦后,突然发现上述解法,让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫。

(三)类比联想,构建新知

这时我再顺势引导学生将结论一般化。

问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:

即:“等比数列的前n项和”

(学生相互合作,讨论交流,老师巡视课堂,并请学生上台板演。)

注:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究。

将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思考,再讨论,最后师在突出强调,加深印象。

两式作差得到“等比数列的前n项和”时,肯定会有学生直接得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而掌握公式的本质。

【设计意***】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成就感。增强学习数学的兴趣和学好数学的信心。

问题8:由 “等比数列的前n项和” 得 “等比数列的前n项和”对不对呢?这里的“等比数列的.前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗? (这里引导学生对“等比数列的前n项和” 进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式“等比数列的前n项和” ,如何把“等比数列的前n项和” 用“等比数列的前n项和” 、“等比数列的前n项和” 、“等比数列的前n项和” 表示出来?(引导学生得出公式的另一形式)

公式:

“等比数列的前n项和”

注:公式的理解

知三求二:n q a1 an Sn ;

n的含义:项数(通项公式是qn-1);

q的含义:公比(注意q=1,分类讨论);

错位相减法:乘公比(作用是构造许多相同项)后错开一项后再减。

【设计意***】:通过反问学生归纳,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管仅仅几句话,然而却有画龙点睛之妙用。

(四)讨论交流,延伸拓展

问题9: 探究等比数列前n项和公式,还有其它方法吗?

“等比数列的前n项和”(学生讨论交流,老师指导。依学生的认知水平可能会有以下几种方法)

(1)错位相减法

“等比数列的前n项和”(2)提出公比q

“等比数列的前n项和”(3)累加法

【设计意***】:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 这有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.

(五) 应用公式,深化理解

例1:在等比数列{ an }中,

(1)已知a1=3,q=2,n=6,求Sn;

(2)已知a1=8,q=1/2,an =1/2,求Sn;

(3)已知a1=-1.5,a4=96,求q与S4;

(4)已知a1=2,S3=26,求q与a3。

【设计意***】:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。

例2:等比数列{ an }中,已知a3=3/2,S3=9/2,求a1与q。

【设计意***】:注意公式中的分类讨论思想。

例3:求数列{n+ }的前n项和。

【设计意***】:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。

练习1:求等比数列“等比数列的前n项和”前8项和;

练习2:a3= ,S9= ,求a1和q;

练习3:求数列{n+an}的前n项和。

(先由学生***求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予适时的表扬。)

【设计意***】:通过练习,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想.

(六)总结归纳,加深理解

问题10:这节课你有什么收获?学到了哪些知识和方法?

【设计意***】:以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法等方面总结。以此培养学生的口头表达能力,归纳概括能力。

(学生小结归纳,不足之处老师补充说明。)

1.公式:等比数列前n项和

当q≠1时,Sn= =

当q=1时, Sn=na1

2.方法:错位相减法(乘以公比)

3.思想:分类讨论(公式选择)

(七)故事结束,首尾呼应

最后我们回到故事中的问题,可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺了。

【设计意***】:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

(八)课后作业,分层练习

(1)阅读本节内容,预习下一节内容;

(2) 书面作业:习题P30 8 .10;

(3)拓展作业:求和:“等比数列的前n项和”

【设计意***】:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

《等比数列》说课稿 10

教学要求:

探索并掌握等比数列的前n项和的公式;

结合等比数列的通项公式研究等比数列的.各量;

在具体的问题情境中,发现数列的等比关系,能用有关知识解决相应问题。

教学重点:

等比数列的前n项和的公式及应用

教学难点:

等比数列的前n项和公式的推导过程。

教学过程:

一、复习准备:

提问:等比数列的通项公式;

等比数列的性质;

等差数列的前n项和公式;

二、讲授新课:

1、教学:

思考:一个细胞每分钟就变成两个,那么经过一个小时,它会***成多少个细胞呢?

分析:公比,因为,一个小时有60分钟

思考:那么经过一个小时,一共有多少个细胞呢?

又因为

所以,则=1152921504

则一个小时一共有1152921504个细胞

2、练习:

列1(解略)

列2(解略)

在等比数列中:已知求已知求

在等比数列中,xx,则xx

三、小结:等比数列的前n项和公式

四、作业:P66,1题

转载请注明出处学文网 » 《等比数列》说课稿范文精选

学习

2023高考录取分数线

阅读(37)

本文为您介绍2023高考录取分数线,内容包括2023高考录取分数线全国,河南2023高考录取分数线,2023高考录取分数线各大学。2023年全国高考录取分数线现已公布,本文整理了2023年高考录取分数线,供考生参考!

学习

2023关于鸦片战争观后感500字精选

阅读(30)

本文为您介绍2023关于鸦片战争观后感500字精选,内容包括鸦片战争观后感不少于600字,鸦片战争观后感550字,鸦片战争观后感200个字。看完一部作品以后,能够给我们不少启示,此时需要认真地做好记录,写写观后感了。快来参考观后感是怎么写的吧,

学习

电脑开机进不了系统怎么办

阅读(30)

本文为您介绍电脑开机进不了系统怎么办,内容包括电脑开机进不了系统怎么办啊,电脑开机进不了系统怎么办win10,电脑开机出现英文进不了系统。电脑开机进不了系统是一种常见的故障,那么遇到这种故障该怎么办呢,下面我们一起来看看吧。

学习

小学生运动会广播稿50字

阅读(26)

本文为您介绍小学生运动会广播稿50字,内容包括小学生运动会广播稿50字以上,小学生运动会广播稿50字左右,小学生运动会广播稿50字简短。在广播站锻炼的学生都知道,广播前一般都会提前准备好广播稿,好的广播稿会带来更好的广播效果,那么什么

学习

第二次竞聘演讲稿精选

阅读(25)

本文为您介绍第二次竞聘演讲稿精选,内容包括2分钟竞聘演讲稿,教务处竞聘演讲稿,技术员竞聘演讲稿。一、演讲稿的写作要求

学习

怎么制作蝴蝶结头花简单又漂亮

阅读(26)

本文为您介绍怎么制作蝴蝶结头花简单又漂亮,内容包括丝带蝴蝶结头花制作教程,蝴蝶结头花教程简单又漂亮,头花蝴蝶结的制作。蝴蝶结头花给小女人们带来了许多甜美的气息,如果自己制作的话,把自己的一些想法加进去,相信制作起来会更加好看。

学习

鸦片战争观后感精选

阅读(28)

本文为您介绍鸦片战争观后感精选,内容包括看完鸦片战争电影的观后感,云游鸦片战争博物馆观后感,甲午战争和鸦片战争观后感。当认真看完一部影视作品后,对人生或者事物一定产生了许多感想吧,为此就要认真思考观后感如何写了。现在你是否对

学习

2023西安中考录取分数线

阅读(39)

本文为您介绍2023西安中考录取分数线,内容包括2023西安中考录取分数线最新公布,2023西安高考各校录取分数线,西安大学录取分数线2023是多少分。大家都希望2023年陕西中考录取分数线能早点公布,毕竟中考分数线决定着孩子上哪所高中,那么,陕

学习

三八妇女节校长致辞精选

阅读(21)

本文为您介绍三八妇女节校长致辞精选,内容包括三八妇女节校长致辞美篇,校长给老师三八妇女节祝福语,校长给老师三八妇女节致辞。三八妇女节校长致辞(精选10篇)

学习

三八妇女节老板致辞精选

阅读(24)

本文为您介绍三八妇女节老板致辞精选,内容包括三八妇女节老板上台发言稿,三八妇女节董事长致辞,三八妇女节感谢老板的致辞。在平时的学习、工作或生活中,说到致辞,大家肯定都不陌生吧,致辞是指在举行会议或某种仪式时具有一定身份的人的讲

学习

清明节诗歌朗诵稿精选

阅读(21)

本文为您介绍清明节诗歌朗诵稿精选,内容包括清明节诗歌朗诵稿子,清明节诗歌朗诵稿小学生三分钟,清明节诗歌朗诵稿高中生。清明节的文化内涵

学习

庆祝三八妇女节致辞精选

阅读(20)

本文为您介绍庆祝三八妇女节致辞精选,内容包括庆祝三八妇女节致辞稿,三八妇女节校长致辞,社区三八妇女节致辞。自设立之初,国际妇女节为发达国家及发展中国家的妇女开启了一个新天地。下面是为大家收集的庆祝三八妇女节致辞(精选47篇),供大

学习

白露节气的养生法

阅读(32)

本文为您介绍白露节气的养生法,内容包括白露节气的正确养生方法,白露节气养生食谱,白露节气早上问候。白露是24节气之一,过了白露秋意就越来越浓,气温也会逐步降低。那么白露节气衣食起居有什么要注意的呢?下面为您带来白露节气的养生法!

学习

江西的的春节作文精选

阅读(28)

本文为您介绍江西的的春节作文精选,内容包括江西的春节作文,江西的春节作文550字,江西的春节作文600字以上。在日常学习、工作抑或是生活中,大家总少不了接触作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方

学习

2023关于鸦片战争观后感500字精选

阅读(30)

本文为您介绍2023关于鸦片战争观后感500字精选,内容包括鸦片战争观后感不少于600字,鸦片战争观后感550字,鸦片战争观后感200个字。看完一部作品以后,能够给我们不少启示,此时需要认真地做好记录,写写观后感了。快来参考观后感是怎么写的吧,

学习

第二次竞聘演讲稿精选

阅读(25)

本文为您介绍第二次竞聘演讲稿精选,内容包括2分钟竞聘演讲稿,教务处竞聘演讲稿,技术员竞聘演讲稿。一、演讲稿的写作要求

学习

鸦片战争观后感精选

阅读(28)

本文为您介绍鸦片战争观后感精选,内容包括看完鸦片战争电影的观后感,云游鸦片战争博物馆观后感,甲午战争和鸦片战争观后感。当认真看完一部影视作品后,对人生或者事物一定产生了许多感想吧,为此就要认真思考观后感如何写了。现在你是否对

学习

关于六一的诗歌精选15首

阅读(31)

六月是百花盛开的季节,是鸟语花香的季节,更是我们向往的季节。因为在这个季节里有我们每个小朋友都期盼的一天,那就是六月一日。下面与您分享关于六一的诗歌(精选15篇),欢迎赏析!

学习

澳门旅游作文精选

阅读(34)

本文为您介绍澳门旅游作文精选,内容包括澳门旅游作文350字,澳门游作文范文,澳门旅游特色介绍作文。在学习、工作或生活中,大家都写过作文,肯定对各类作文都很熟悉吧,根据写作命题的特点,作文可以分为命题作文和非命题作文。那么,怎么去写作文

学习

红星照耀中国每章读书笔记精选

阅读(30)

本文为您介绍红星照耀中国每章读书笔记精选,内容包括红星照耀中国第一章读书笔记,红星照耀中国每章读书笔记300字,红星照耀中国每章读书笔记全部。读书笔记是指读书时为了把自己的读书心得记录下来或为了把文中的精彩部分整理出来而做的

学习

红星照耀中国心得感悟精选

阅读(48)

本文为您介绍红星照耀中国心得感悟精选,内容包括红星照耀中国心得感悟100字,红星照耀中国心得感悟15篇,红星照耀中国心得400字。心得体会的写作方法(一)简略写出自己阅读过的书籍或文章的内容,然后写出自己的意见或感想。明确的说,就是应用

学习

心情不好发朋友圈的句子精选

阅读(24)

本文为您介绍心情不好发朋友圈的句子精选,内容包括心情不好发朋友圈的句子图,心情不好发朋友圈的句子关于家庭,心情不好发朋友圈的句子抖音。在平时的学习、工作或生活中,大家总免不了要接触或使用句子吧,根据句子的语气用途不同,句子可以