初中数学多解题型的方法
在数学的多解题中,有圆的多解题型、数的多解题型、三角形的多解题型、四边形的多解题型。下面一起来学习一下吧!
一、圆的多解题型
1、平面上一点到圆的最大距离、最小距离分别是6和2,求圆的直径。(分点在圆内和圆外两种情况,直径是6+2或6-2)
2、圆的两条弦长6和8,半径5,求两条弦的距离。(分弦在圆心的同旁和两旁两种情况,距离是4+3或4-3)
3、半径是4的圆中,长是4的弦所对的圆周角是多少度?(分弦所对的优弧和劣弧对的圆周角两种情况,度数是30或150)
4、相切两圆半径分别是4和6,求圆心距。(分内切、外切两种情况,圆心距是6-4或6+4)
5、相交两圆半径分别是25和39,公共弦长30,求圆心距。(分两圆心在公共弦的同旁和两旁两种情况,是36-20或36+20)
6、三角形ABC的外接圆半径是4,BC=4,求角A的度数。(分圆心在三角形内部和外部两种情况,是30度或150度)
二、数的多解题型
1、a的相反数是本身,b的倒数是本身,则a-b的值是多少?(倒数是本身的数有1和-1,结果是-1或1)
2、平方是本身的数是_____(是0或1)
3、a的立方根是2,a的平方根是几?(正数的平方根都有两个,是正负2根号2)
4、a、b的平方相等,a+2=3,b-2的差是几?(平方相等的数要么相等要么互为相反数,b是1或-1,差是-1或-3)
5、绝对值是5的数与平方根是3的数的和是几?(绝对值是正数的数有两个,和是8或-2)
6、数轴上,与表示2的点距离等于6的点表示的数,是倒数等于1.5的数的多少倍?(距离是6的点表示的数是原数加上6或减去6,结果是-6倍或12倍)
三、三角形的多解题型
1、等腰三角形一腰上的高等于腰长的一半,求顶角。(分锐角三角形和钝角三角形两种情况,顶角30°或150°)
2、等腰三角形两边长5和6,求周长。(两边分别是腰和底两种情况,得周长16或17)
3、直角三角形两边长3和4,求第三边。(第三部边是斜边、直角边两种情况,是5或根号7)
4、三角形的一个30°角对的边为5,一条邻边是8,求面积。(分锐角三角形和钝角三角形两种情况,面积是2(4根号3+3)或2(4根号3-3)
5、等腰三角形一个角是另一个角的2倍,求底角。(有底角大于顶角和底角小于顶角两种情况,底角是72°或45°)
6、画***找出到三角形三边距离相等的点。(分形内形外两种情况,有4个点:内角平分线交点一个,外角平分线交点3个)
四、四边形的多解题型
1、平行四边形ABCD中,AB=6,E是直线AB上的一点,BE=2,DE交AC于F,求AF与FC的比。(点E可在B点的左和右,比值是2:3或4:3)
2、平行四边形ABCD中,AB=5,BC边上高AE=3,CE=2,求BC。(点E可在C点的左和右,BC=6或2)
选择题法大全
方法一:排除选项法
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊***形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
方法五:数形结合法
解决与***形或***像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法
将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法
观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法
列举所有可能的情况,然后作出正确的判断。
方法九:待定系数法
要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法
当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
填空题解法大全
一、填空题特点分析
与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。考查内容多是“双基”方面,知识覆盖面广。但在考查同样内容时,难度一般比择题略大。
二、主要题型
初中填空题主要题型一是定量型填空题,主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度;二是定性型填空题,考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。
填空题一般是一道题填一个空格,当然个别省市也有例外。江西省还出了一道“先阅读,后填空”的试题,它首先列举了30名学生的数学成绩,给出频率分布表,然后要求考生回答六小道填空题,这也可以说是一种新题型。这种先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解题。它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。
解答题的答题技巧
由于解答题是按照解题步骤得分的,因此必须注意解题过程的规范性、完整性、准确性与严密性.
1. 计算题:应列式计算,体现运算关系,并按运算顺序进行化简,步骤写完整,不能只写答案;
2. 几何证明题:观察几何***形,从中分析出边角间的关系. 应从已知条件出发,严密推理,步步有理有据. 证明过程应书写简练、思路清晰、逻辑严密、步骤完整;
3. 锐角三角函数的实际应用题:从题设中提取相关信息,合理地寻找直角三角形或作出合适的辅助线将其转化为直角三角形模型,将已知和所求放在直角三角形中进行求解即可;
4. 一次方程和不等式及一次函数的实际应用题:要仔细审题、读题,通过推敲题设中的关键词(如:多、少、大于、小于、至少、不超过等),寻找等量关系建立方程或不等式是解题的关键;对于涉及一次函数的要注意通过分析题意列出函数关系式,再运用函数性质解题;
5. 类比、拓展探究题:此类题目一般第(1)问都比较简单,考生在作答时尽可能把第(1)问做对,对于第(2)问和第(3)问,一般都会与第(1)问有一定的联系,可通过分析第(1)问的解法,逐步推理求解;
6. 二次函数压轴题:一般第(1)问求二次函数解析式是送分题,考生可节约时间快速作答,对于第(2),(3)问,一般会涉及到分类讨论思想,学生做这两问时,一定要考虑周全。
常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和***形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。宏大课堂多媒体智慧白板宏大智慧课堂题库练习
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,由结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;
根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
转载请注明出处学文网 » 初中数学多解题型的方法