1974年5月2日J.Paelinck在荷兰统计协会年会(Tilburg,蒂尔堡)大会致词时提出“空间经济计量学”(Spatial Econometrics)的名词,关于空间经济计量学的想法,他在1966年区域科学协会年会的报告中就已经出现了。
自从Paelinck提出“空间经济计量学”这个术语,Cliff和Ord(1973,1981)对空间自回归模型的开拓性工作,发展出广泛的模型、参数估计和检验技术,使得经济计量学建模中综合空间因素变得更加有效。
Anselin(1988)对空间经济计量学进行了系统的研究,它以及Cliff和Ord(1973,1981)这三本着作至今仍被广泛引用。Anselin对空间经济计量学的定义是:“在区域科学模型的统计分析中,研究由空间引起的各种特性的一系列方法。”Anselin所提到的区域科学模型,指明确将区域、位置及空间交互影响综合在模型中,并且它们的估计及确定也是基于参照地理的(即:截面的或时-空的)数据,数据可能来自于空间上的点,也可能是来自于某个区域,前者对应于经纬坐标,后者对应于区域之间的相对位置。
国外近几年空间经济计量学得以迅速发展,如Anselin和Florax(1995)指出的,主要得益于以下几点:
(1)人们对于空间及空间交互影响的作用的重新认识。对空间的重新关注并不局限于经济学,在其它社会科学中也得以反映。
(2)与地理对应的社会经济大型数据库的逐步实用性。在美国以及欧洲,***统计部门提供的以区域和地区为统计单元的大型数据库很容易得到,并且价格低廉。这些数据可以进行空前数量的截面或时空观测分析,这时,空间(或时空)自相关可能成为标准而非一种特殊情况。
(3)地理信息系统(GIS)和空间数据分析软件,以高效和低成本的计算技术处理空间观测的发展。GIS的使用,允许地理数据的有效存储、快速恢复及交互可视化,为空间分析技术的艺术化提供了巨大的机会。至少目前线性模型中,缺少针对空间数据和空间经济计量学的软件的情况已经大为改观。目前已有一些专门的空间统计分析软件,并且SAS、S-PLUS等着名统计软件中,都已经包括用于空间统计分析的模块。
(二)空间经济计量学与相关学科的关系
空间统计学是研究空间问题的另一门学科,它是应用数学的一个快速发展的分支。它起源于20世纪50年代早期,用以帮助采矿业进行矿藏量的计算。最早的工作是采矿工程师D.G.Krige和统计学家H.S.Sichel在南非进行的。70年代随着计算机的普及以及运算速度的大幅提高,空间统计分析技术逐渐扩展到地球科学的其它领域。目前已经普遍存在于需要处理时间上或空间上相关的数据的科技领域中。
空间经济计量学与空间统计学的区分不太容易。Haining和Anselin的观点认为空间统计学的研究大多由数据驱动,而空间经济计量学由模型驱动,即从特定的理论或模型出发,重点放在问题的估计、解释和检验上。空间统计学的主流是研究生态学和地质学中的物质现象,空间经济计量学主要研究与区域及城市经济有关的模型。有一种观点认为二者的区分应基于作者将其工作对应于空间经济计量学还是空间统计学,这种区分办法可能较为简单。
地质统计学(Geostatistics)发展于20世纪60年代,主要用于研究地质学现象的空间结构和进行空间估值。例如,在探矿过程中,通常是在空间上布点进行钻探,然后对采样得到的样品进行分析,估计矿藏的分布和储量。由于矿藏不开采的话,在时间上结构几乎是不变的,因此地质统计学研究的问题主要是空间相关。空间经济计量学所研究的问题不仅存在空间相关,往往所研究的问题在时间上也存在相关。
在区域经济学的理论中,人们建立了各种理论以及关系式来描述人类在空间上的行为,如研究城镇问题的“引力模型”等。但在利用模型进行定量研究问题的时候,需要将理论或关系式用数学模型来进行刻划,利用统计方法对模型进行估计、检验,并进行评价,这些正好是属于经济计量学研究的范畴。应该说,空间经济计量学主要研究区域经济问题,依据的是区域经济学理论,但它还需要综合数学,以及空间统计学等学科,因此它不等同于区域经济学,而是一门交叉学科。
二、研究的问题
空间经济计量学主要研究存在空间效应的问题。空间效应主要包括空间相关和空间差异性。在研究中涉及空间相邻、空间相邻矩阵等概念。
(一)空间相关
空间相关指在样本观测中,位于位置i的观测与其它j≠i的观测有关,即
附***
存在空间相关的原因有两方面:相邻空间单元存在测量误差,空间交互影响的存在。测量误差是由于调查过程中,数据的采集与空间中的单位有关,如数据是按省、市、县等统计的,但设定的空间单位与研究问题不一致,存在测量误差。
空间相关不仅意味着空间上的观测缺乏***性,并且意味着潜在于这种空间相关中的空间结构,也就是说空间相关的强度及模式由绝对位置和相对位置(布局,距离)决定。
对于空间相关,空间自回归通常是其核心内容,空间自回归模型的一般形式为:
附***
在这个模型中,β解释变量X(n×k矩阵)的参数向量(k×1),ρ是空间滞后相关变量的参数,λ是残差空间自回归(空间AR)结构中的参数。
W[,1]和W[,2]为n×n矩阵,是标准化或未标准化的空间加权矩阵,分别对应于因变量以及扰动项中的空间自回归过程,这两个矩阵可以不同,这意味着两个过程由不同的空间结构生成。
这个模型可以退化成为普通的线性回归模型、(纯)空间自回归模型、混合回归与空间自回归模型、残差空间自回归模型等形式。
对这个模型,普通最小二乘估计不仅是有偏的,而且是不一致的,参数的估计通常采用极大似然估计,近几年,有学者尝试采用贝叶斯估计对参数进行估计。
(二)空间差异性
空间差异性指空间上的区域缺乏均一性,如存在中心区和郊区、先进和后进地区等。例如,我国沿海地区和中西部地区经济存在较大差别。
对于空间差异性,只要将空间单元的特性考虑进去,大多可以用经典经济计量学方法解决。但当空间差异性与空间相关共同存在时,经典经济计量学方法不再适用,而且这时问题可能变得非常复杂,因为这时要区分空间差异性与空间相关可能非常困难。
研究空间差异性的模型主要有:
E.Casetti提出的空间扩展模型(1972)和回归参数漂移分析方法(简称DARP)模型(1982)。这时,空间差异性表现为模型参数随空间位置变化,并以空间单元的位置信息作为辅助变量(称为扩展参数)。
y=Xβ+ε
附***
模型(3)为以经纬坐标(Z[,x],Z[,y])作为扩展参数的空间扩展模型/,!/。同样可以以到中心区域的距离作为扩展参数设计模型。
将模型(3)的第二个式子右边加入随机扰动项,则为DARP模型。E.Casetti(1992)进一步提出了贝叶斯空间扩展模型。
转载请注明出处学文网 » 对空间经济计量学模型研究