在教学工作者实际的教学活动中,时常要开展教案准备工作,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?它山之石可以攻玉,以下内容是记得网为您带来的8篇《《分数的意义》教案》,可以帮助到您,就是记得网最大的乐趣哦。
分数的意义教案 篇一
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的
区别:一种方法是加法,另一种方法是乘法
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变
(五)提示:为计算方便,能约分的要先约分,然后再乘
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数的意义教案 篇二
分数、百分数的意义
教学内容:
教材第77~78页分数、百分数的意义和“练一练”,练习十五第1—10题。
教学目标:
使同学进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系;进一步培养同学的判断、分析等思维能力。
教学重点:
进一步认识分数、百分数的意义和相关概念,认识分数与小数的联系、分数与百分数的联系和区别,以和分数与除法之间的联系。
教学难点:
正确认识分数和百分数的联系和区别。
教具准备:
小黑板
教学过程:
教学过程
自我加减
一、揭示课题
1.说出下列小数的意义。
O.3
0.13
0.258
O.013
同学口答后,说明一位小数、两位小数、三位小数……分别表示十分之几、百分之几、干分之几……
2.引入课题
我们已经复习了整数和小数的知识,今天开始,我们复习分数和百分数的。知识。这节课,我们复习分数和百分数的意义。(板书课题)
通过复习,要进一步掌握分数、百分数的意义和一些相关概念,认识这些概念的联系,并提高分析、判断 m.haozuowen.net 等思维能力。
二、复习分数的意义和相关概念
1.说出每个分数的意义。
提问:根据上面每个分数的意义,你能说说怎样的数是分数吗?上面每个分数的分数单位是什么,各有几个这样的分数单位?什么叫分数单位?
2.说出下列各题的商。
2÷9
4÷13
÷7
提问:在上面算式里,能用整数表示这些算式的商吗?像上面这样两个数不能整除时,用什么数来表示商?
指名同学口答。
提问:除法与分数有什么关系,用字母怎样表示?
3.同学练习。
(1)“练一练”第l、2题。
同学填在课本上。指名口答,并说说怎样想的。
(2)口答练习十五第1题。
提问:为什么这两个分数不一样?
(3)口答练习十五第2题。
指名同学说出每个分数的意义。
(4)口答练习十五第3题。
指名同学说出每句话的含义。
4、比较每组数里小数与分数表示的意义。
0.3和
0.13和
0.013和
你觉得每组数里小数和分数表示的意义有什么联系?可以看出小数实际上是怎样的分数?
5.复习分数的分类。
(1)提问:我们把分数怎样分类的?
(2)“练一练”第3题。
指名同学口答。
(3)提问:你是根据什么判断一个分数是真分数,还是假分数的?真分数和假分数的值有什么区别?
(4)提问:假分数可以改写成什么形式的数?带分数和整数能改写成假分数吗?
(5)“练一练”第4题。
小黑板出示,指名一人板演,其余同学做在练习本上。
集体订正。
提问:假分数怎样化成带分数或整数?带分数或整数怎样化成假分数?
6.复习最简分数。
(1)提问:怎样的分数是最简分数?谁来举几个最简分数的例子?
(2)在(
)里填上适当的数,使每个分数都是最简分数。
①4米是6米的 。
②9千克是12千克的 。
③5厘米是1O厘米的 。
指名口答后提问:这里的分数表示的是什么意思?(一个数是另一个数的几分之几)
三、复习百分数的意义和相关概念
1、“练一练”第5题。
让同学填(
)里的数,然后口答。
老师板书:97.5%,提问:97.5%是什么数,它是怎样计算出来的?合格率97.5%具体表示什么意思?
从上面的数里,你能知道怎样的数叫做百分数?请你说出几个百分数。你认为百分数的意义与分数的意义有什么联系,有什么不同?
2.复习“成数”。
(1)提问:“成数”实际上是什么数?在哪里用“成数”来表示?
(2)“练一练”第6题。
同学做在课本上,然后口答。
3.练习十五第4题。
同学做在课本上,然后指名回答。
追问:怎样求一个数是另一个数的百分之几?
四、综合练习
1、练习十五第5题。
让同学填在课本上。
小黑板出示,同学口答,老师板书。
2.做练习十五第6题。
让同学做在练习本上,然后口答。追问:分数单位是的最简真分数的和是多少?
3.练习十五第8题。
先让同学讨论,再填在课本上。指名同学口答,并说明理由。
4、练习十五第l0题。
让同学找规律,在□里填上恰当的数。
同学口答,说说是怎样想的。提问:你知道这样填下去,会越来越接近哪个数?为什么?
五、课堂小结
谁来说说今天复习的这些概念含义?
六、课内作业
练习十五第7、9题
七、板书设计
分数、百分数的意义
a÷b= (b≠ 0)
真分数
分数
假分数
八、我的课后反思:
小学五年级数学分数的意义教案 篇三
教学目标:
要求学生在初步了解分数的基础上,对分数从感性认识上升到理性认识,理解分数的意义。
通过练习加深同学们对分数的意义的理解。
培养同学们分析问题、解决问题的能力。
教学重点:
理解单位1的含义。
教学难点:
理解单位1的含义。
教学过程:
(1)在初步了解分数的意义之后:
请用分数表示2个红的圆。(1/2,2/4)
讨论:同意哪种意见?
为什么同样的两个红圆可以用两个不同的分数表示?
那么老师用4/8表示这两个圆,你认为可以吗?为什么?
你们认为还可以用别的分数来表示吗?(6/12,8/16,12/24)
这样的分数你们能多少个?(写不完)为什么?
思考:为什么同样的两个圆可以用不同的分数来表示呢?
(平均分的份数不同,两个圆所占的份数也不同,分数就不同了)
(2)巩固练习
A、1/21/31/41/61/121/24
任选一个分数,并在***上用阴影部分表示出来。
B、任选一副***表示出它的5/6。
(3)课堂小结
今天发言的同学请站起来。
全班46人,发言的人数是全班人数的几分之几?
还有一些同学没发言,请发言过的同学出题,让他们有机会发言。
教学反思:
在练习课的设计上,课本上的练习十分单调,将课外精选的一些练习安排在练习课上,取得了比较好的效果,学生对分数的意义有了一个比较完整的理解。
小学五年级数学分数的意义教案 篇四
教学目标
(1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。
(2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。
(3)能正确地解答“求一个数是另一个数的几分之几”的应用题。
教学重点、难点
重点、难点:分数的意义和性质。
教具、学具准备
教学过程
一、知识整理
1、分数的意义整理
(1)提问:什么是分数?分数与除法有什么关系?
(2)练习:说出下列分数的意义、分数单位及有几个这样的分数单位:
1/45/61/8千克4/7米
A、学生回答并提问:在“1/8千克”和“4/7米”中,把什么看作单位“1”?
B、把“5/6”和“4/7米”改写成除法算式,怎么写?从除法的角度,如何来理解这两个分数的意义?
2、分数的基本性质整理。
(1)出示:1/2=()/85/7=20/()1又30/45=1又()/()()/20=6。8=9/()
A、学生回答。
B、这道题用到什么知识?什么是分数的基本性质?
(2)将“商不变性质”与“分数的基本性质”的内容添入下面的表格中:(全体练P159第12题中(4))
商不变性质分数的基本性质
[][]
反馈后提问:它们之间有什么联系?学生回答后接着问:那么。“商不变性质”就是“分数的基本性质”吗?为什么?
(3)练习:
①()/18=5/6=20/()=()÷12约等于()(保留两位小数)
②填上大于、小于或等与:
4/7()5/147/11()29/4421/35()3/532/60()2/3
问:你是怎么比较的?
二、基本练习
1、A、把单位“1”平均分成5份,表示这样的3份数是()。
把4吨平均分成11份,表示这样的2份的数是(),表示这样的3份是()吨。
B、2又5/6的分数单位是(),它有()个这样的分数单位,9个这样的单位组成的数是();
C、把7/8的分数单位扩大2倍是(),把它的分数单位缩小2倍是()。
2、比较分数的大小,课本P160第14题。
(1)学生练习
(2)反馈练习结果后讨论:
11/22()7/825/40()20/321又3/20()1、151、75()1又5/6分别用什么方法比较大小来得方便?为什么?
(3)方法小结:
A、异分母分数比较大小,一般用通分或约分的方法进行;
B、分数与小数比较大小,一般化成小数比较方便些/
4、列式解答:
甲数是40,乙数是32,丙数是48,求:
(1)甲数是乙数的几倍?
(2)乙数是丙数的几分之几?
(3)甲数是乙、丙两数之和的几分之几?
(4)丙数是甲、丙两数之和的几分之几?
A、学生全体练习
B、反馈:师生讨论列式与结果。
C、小结:求一个数是另一个数的几倍或几分之几,关键是什么?方法怎样?这两类题目有什么共同点和不同点?
三、综合练习
1、课本P158第12题。
2、课本P159第13题。
学生练习后反馈说理。
3、***作业:P160第15、16、17题。
四、课堂作业
《作业本》
理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质中,如“1千米的3/4和3千米的1/4是相等的”有些学生理解不通;还有如看***用分数表示阴影中什么时候用带分数,什么时候用假分数,也有些学生分不清。
分数的意义教案 篇五
一、教材分析
(一)教学内容:
九年义务教育小学数学教材第十册第四单元的第一课时
(二)教学目标:
1。让学生在说一说、分一分、画一画、写一写、折一折、涂一涂等体验活动中理解单位“1”,感受并理解分数的意义,培养学生实际操作的能力和抽象概括的能力。
2。在实践中培养学生收集、处理信息的能力以及自主探究、合作学习的能力。
3。通过创设互相协作,积极探索的学习情境,培养学生的学习兴趣,并渗透数学于实际生活的思想。
(三)教学重点:
建立单位“1”的概念,理解分数的意义。
(四)教学难点:
理解单位“1”的概念。
二、教学方法
学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。因此,本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法,并穿插自学、练习。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。
三、学法指导
学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。
(一)教给学生探索知识的方法。
教师为学生提供了一些动手的材料8颗棋子、2块糖、10粒豆子、一幅熊猫***等,让学生用这些学具以小组合作的形式将他们分一分、画一画、折一折表示1/2。然后观察、比较他们的`相同点和不同点,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体。达到感性认识到理性认识的升华。
(二)引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。
学生在在动手操作、比较之后归纳出了单位“1”也可以是许多物体组成的一个整体。让学生进行2次操作体会由于分的份数不同,取的份数不同,产生的分数也不同,在此基础上进一步明确分数的意义概括出:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
四、教学程序
(一)展示资料,了解分数的产生
通过谈话自然引入,让学生通过调查、把自己知道的说给大家听。使学生有满足感,产生对学习分数的兴趣,感受到分数产生的必要性。
(二)唤醒已知、探究未知
1。通过回顾旧知,为学习新知作准备,激发学生的学习动机,调动学生的学习积极性。
第一次动手操作理解单位“1”的含义。
(1)教师提出:1/2除了可以表示把一个苹果平均分成2份,取其中的1份,还可以表示什么呢?为了便于同学们研究问题,老师为学生提供了一些动手材料(8颗围棋子、1米长的绳子、一张圆形纸片、一幅熊猫***等),以小组合作的形式将他们分一分、画一画、折一折,用这些学具试着表示1/2。
(2)集体交流、共享成果
各组选派代表到实物投影仪前,向大家展示自己的操作方法及成果。
(3)重点、难点问题教师利用多媒体技术予以突破。
如:学生用8颗棋子、6只熊猫表示1/2这个分数后,教师出示,通过直观演示、使学生明确单位“1”可以是一个圆、一个计量单位、还可以是许多物体组成的一个整体。
(4)引导归纳,通过比较相同与不同,让学生亲自去发现,去学习,去探究,体会、理解单位“1”并结合实际谈单位“1”,体会生活中的单位“1”
2。再次操作,领悟分数意义
(1)再次操作,让学生用学具表示出不同的分数,在操作中让学生体会到同样是这些学具却表示出了不同的分数,从而得出分的份数不同,取的份数不同,分数也就不同,为概括分数的意义作准备。同时,在操作过程中,培养了学生的创新思维,
(2)引导学生试着概括分数的意义
(3)阅读课本86页什么叫分数,自学分数各部分所表示的含义。
(4)巩固分数的意义和分子分母的含义。
(三)反馈练习
这一环节,教师根据学生反馈的信息及时调控教学,使学生切实掌握知识,达到训练和提高的目的。为了能使面向全体和因材施教相结合,让每一位学生获得成功,我设计下列练习:
1。用分数表示下面各***中的涂色部分
2。用下面的分数表示***中的涂色部分对吗?为什么?
以上两道题是基本练习题,目的是:突出本节课的重点、难点、深化对分数意义的理解。
3。游戏“夺红旗”
男、女各一队,派代表到前面夺红旗,但要听老师指挥,拿对了红旗归这一队,错了机会自动转给下一队,老师当发令员,其他同学当小小裁判员。女同学代表到前面拿走全部的2/11、男同学拿走剩下的1/9、女同学拿走剩下的1/4、男同学拿走剩下的2/3、女同学拿走剩下的1/2,剩下的一面奖给全班。
此题设计加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性、灵活性。
(四)全课小结,揭示课题
“这节课,我们一起学习了分数的意义,对分数有了进一步的认识,关于分数还有很多很多的知识哪!同学们课下继续去学习、去探究吧!”教师将学生的学习兴趣延伸到了下节课。
《分数的意义》教案 篇六
教学设计理念:
1、关注学生的实际。在学生已有的知识基础和生活经验上展开学习,把学习的主动权归还学生。
2、教学进程多途径。教学中将根据学生的不同情况采取不同的教学对策,努力创造适应学生的教学方式。
3、“动手实践、自主探索与合作交流是学生学习数学的重要方式……数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。
4、“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。
5、数学是一种文化。
教材简析:
《分数的意义》是在学生已对分数有了初步认识的基础上进行教学的。教学的重点是理解分数的意义,学习的难点是理解“把几个物体看作‘一个整体’来平均分”。分数的意义是进一步学习分数的基本性质、分数的运算等的基础。
教学内容:人教版小学数学第十册第85~86页。
教学目标:
知识与技能目标:
1、在具体情境中认识、理解单位“1”,掌握分数的意义及分子、分母的意义。进一步理解分数的意义。
2、渗透认识事物的方法;体会数学知识与生活的紧密联系,逐步提高提出部问题、数学应用的意识和能力。
数学思考目标:
能对具体情境中分数的意义作出解释,能有条理地解释问题解决的思考过程。
解决问题目标:
能用分数进行简单的表述和交流,获得与同伴合作探索和相互交流的体验。
情感与态度目标:
主动地参与数学活动,感受数学与生活的联系,树立学习数学的信心。
教学重点:分数意义的归纳与单位“1”的抽象。
教学难点:把多个物体组成的一个整体看作单位“1”。
教学准备:教具(三盒粉笔一盒5支,一盒10支,一盒15支。)
学具(12根小棒、水彩笔、练习卷)
一、介绍分数演变的历史。(老师向学生介绍分数的历史渊源。)
(1)你们知道这是什么吗?(课件依次出示:
师:其实这四幅***,都表示分数,古希腊人、古印度人、阿拉伯人用了不同的表示方法。三千多年前,用嘴巴的形状代表分数,后来逐渐演变到现在的。
(2)关于分数,我已经知道了什么?(电脑出示)
(生:分数组成:分子、分母和分数线、分数的加减法、分数的读写法、分数大小比较等等)
师:你能举例说明吗?
……分子(表示有这样的多少份)
……分数线
……分母(表示把单位“1”平均分成多少份)(把单位“1”讲分数单位时再补上)
(3)关于分数,我还想知道什么?(电脑出示)
学生回答(略)
师:同学们,我们带着问题去学习好吗?虽然有些问题,我们不可能一下子可以全学完。不过我们很好的老师——课本。大家看一看,课本,你能明白那些知道?
会的我们可以跳过去,不会的就多看几遍,用笔记打记重点部分。
学生自学课本。
(4)关于分数,自学课本后,我又知道了什么?(电脑出示)
(5)我还有什么地方不明白?
二、探索新知:
1、试试你的眼力:(电脑出示)
(1)出示一个的长方形的阴影部分
师:阴影部分可以用什么分数表示?表示什么?把(长方形)平均分成(3份),表示这样的(一份)的数。(教师板书)把一个长方形平均分成3份,表示这样1份的数。(生答后,师板书)
师:判断是否正确,关键看什么?
生:关键要看是不是平均分成3份。
师:现在阴影部分可以用什么分数表示?表示什么?
把()平均分成()份,表示这样()的数。
(2)、把一条线段平均分成5份,每份是它的(),4份是它的()
把一条线段平均分成5份,每份是它的,4份是它的。(生答后,师板书)
(3)、把一个整体平均分
把()看作一个整体,平均分成()份,1个苹果是这个整体的,1个苹果是这个整体的。
把(一堆苹果)看作一个整体,平均分成()份,
1份是这堆苹果的,有()个。
3份是这堆苹果的,有()个。
3、单位“1”的抽象。
师:你能告诉老师这个分数表示什么吗?
生:把一个物体、一个计量单位、一个整体平均分成4份,表示这样的3份的数
师:请大家自己在下面再说说看。
师:刚才你们自己在说的时候,除了觉得比较全面外,有没有其他的感觉?(有点麻烦)
师:那能不能想个办法,说得不麻烦呢?
师:刚才大家提到了整数“1”、整体“1”……,虽然说法不同,其实都是想用一个词来概括这里的一个物体、一个计量单位和一个整体。其实在数学上,这些都可以用自然数“1”来表示,通常我们称它为单位“1”。(板书单位“1”)
师:想一想,除了上面举出的这些事物可以看作单位“1”外,还有哪些事物可以看作单位“1”的?
师:同学们举出了很多单位“1”的具体例子。那就是说,我们在得到分数的时候,无论是把什么平均分,都可以看做是把单位“1”平均分。
4、由具体到抽象逐步根据出分数的意义
师:认识了单位“1”,现在谁会用简洁的语言说说表示什么?
(把单位“1”平均分成4份,表示这样3份的数。)
依次出示,请学生说意义。
生:把单位“1”平均分成若干份,表示这样3份的数。
生:把单位“1”平均分成4份,表示这样一份或几份的数。
生:把单位“1”平均分成若干份,表示这样一份或几份的数。(完成板书)
师:把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数(完成分数意义的板书)其实,刚才这两位同学所说的就是分数的意义。(板书课题)
师:我们一起来读一读。(生读)
找出重点词
师:你觉得在这句话里,哪些词比较重要?
三、课中游戏:猜一猜
师:老师这里有3盒粉笔,我从第一盒里拿出1支,是这盒粉笔的,你能猜出第一盒粉笔共有几支吗?
师:为什么盒子里原来有5支?(第一盒的是1支,一份是1支,所以5份就是5支)
师:从第二盒里拿出2支,也是这盒粉笔的,第二盒里原有几支粉笔。你是怎么知道的?(第二盒的是2支,一份是2支,所以5份就是5个2支共10支。)师:从第三盒里拿出3支,也是这盒粉笔的,第三盒里原有几支粉笔。怎么那么快就猜出来了?(第三盒的是3支,一份是3支,所以5份就是5个3支共15支。)
电脑验证:
师:这三个,都是把一个整体平均分5份,表示其中的一份。这三个有什么相同点?它们虽然都是取出一份,一份都相同吗?有什么不同点?为什么?
四、巩固练习
1、看分数,举小棒:
要求:看屏幕显示的分数后拿小棒,拿出以后,用左手举起来。
(1)拿出12根小棒的
有学生举1支。
师:对吗?分母没有出来的时候,能拿吗?1表示什么?(表示其中的一份,分子表示取了这样的多少份。)
()里的数不确定,拿法也不一样
出示,再出示。
学生拿,并说出为什么这么拿。
(2)出示分母。
师:虽然不能拿,但我们可以做一件什么事?为什么呢?(将小棒平均分成6份,分母表示把单位“1”平均分的份数。)
出示,再出示。
2、填空:
1把8个饼平均分成4份,一份是整体的,3份是整体的。
2把全班平均分成6组,一个组的人数是全班人数的,两个组的人数是全班人数的
3、把6只猴子玩具平均分成3份,2只猴子玩具是其中的()份,4只猴子玩具是其中的。
4把10支铅笔平均分成5份,把()看作单位“1”。每份是它的,每份是()支铅笔。
5把50支铅笔平均分成5份,把()看作单位“1”。每份是它的,每份是()支铅笔。
3、问答题:
下面每个***中涂色的小正方体各占整体的几分之几?
下面每个***中没涂色的小正方体各占整体的几分之几?
4、涂色:选择一幅***,涂色表示。
五、在生活中找分数:
《科学天地》大约占黑板报版面的几分之一?
《艺术园地》大约占黑板报版面的几分之一?
哪一部分大些?
六、在***形中找分数
占上***的几分之几?占下***的几分之几?占上下***的几分之几?
七、成语中找分数。
师:同学们今天表现得都很棒!下面我们一起轻松一下,看几个带有数字的成语。(出示成语“三天打鱼,两天晒网”及相应画面。)
师:听说过吗?谁能简单说说这个成语的意思!
师:人们通常用“三天打鱼,两天晒网”比喻做事没有恒心,如果我们就从字面上理解,把它看成是打了三天鱼,晒了两天网。那打鱼的天数是总天数的几分之几?
师:老师这儿还有一些成语,你能从中找到分数吗?
十室九空、百发百中、九死一生、十拿九稳、万里挑一
师:其实不仅仅在成语中能找到我们所学的数学知识,在其他各门学科里,在我们的日常生活中,只要你仔细观察,用心去感受,你会发现,数学无处不在,无时不在散发着它巨大的魅力。
分数的意义教案 篇七
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4×3×2×6
÷4÷3÷2÷6
2、列式,说清数量关系
小明2小时走了6km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景***。
理解题意,列出算式
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段***进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段***补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2×3
(5)综合整个计算过程:
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己***尝试分数除以分数的计算。
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生***完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意***:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
小学五年级数学分数的意义教案 篇八
学习内容:
课本第97页例1及“做一做”,第99页练习十九第1、2、3题。
学习目标:
1、我会用分数与小数的关系,把小数化成分数。
2、我能应用所学数学知识解决问题的能力。
学习重难点:
小数化分数的方法。
学习过程:
一、导入新课
请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?
二、合作探究、检查独学
1、自学例1,小组合作交流
用分数表示:
用小数表示:
这两个结果有什么关系:
2、用自己的话说一说怎样把小数化成分数?应注意什么问题?
①我的想法:
②完成课本97页“自己试一试”三个填空题。
3、小组代表展示、汇报
4、总结升华
5、我能行:“做一做”把下列小数化成分数。
0、4=0、05=0、37=
0、45=0、013=
上面内容就是记得网为您整理出来的8篇《《分数的意义》教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在记得网。