作为一无名无私奉献的教育工作者,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。写教学设计需要注意哪些格式呢?下面是记得网的为您带来的3篇《最大公因数教学设计》,希望能够给您提供一些帮助。
最大公因数教学设计 篇一
教学目标:
1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。
教学重点:
理解公因数和最大公因数的概念。
教学难点:
理解并掌握求两个数的最大公因数的方法。
教具准备:
课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。
教学过程:
一、创设情境,引导动手操作
1.情境导入
2.出示问题,明确要求。(理解重点要求,如整分米数,整块)
3. 学生猜测可选用几分米的地砖。
4.介绍教具,明确活动要求。
5.小组活动。
二、自主探索,形成概念
1.展示学生作品,得出结果。
2.教师将不同铺法展示到课件上。
3.明确王叔叔对地砖的要求必须符合什么条件。(地砖的边长必须既是16的因数又是12的因数。)
4.引出公因数和最大公因数的概念,揭示课题。
5.巩固练习课本80页做一做。
三、自主探究,掌握方法
1.怎样求两个数的最大公因数。
2.出示例2,***思考,做在练习本上,指名板演,集体订正。
3.归纳方法,找出公因数和最大公因数的之间的关系。(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。)
四、巩固练习,总结提升
1.81页做一做,***思考,指名回答,集体订正。
2.总结规律。(当两个数是倍数关系时,较小的数就是最大公因数。两个数的公因数只有1时,那他们的最大公因数就是1。)
五、小结
谈谈本节课有什么收获。
《最大公因数》教学设计 篇二
《最大公因数》教学设计
《最大公因数》教学设计教学目标:
1、结合具体情境理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、会用公因数、最大公因数的知识解决简单的实际问题,体验数学与日常生活的联系。
3、通过学生合作探究等活动,培养学生的合作能力和抽象概括能力,以及激发学生对探究数学知识的兴趣。
教学重、难点:
重点:理解公因数和最大公因数意义,会求最大公因数。
难点:理解公因数和最大公因数的意义。
教学准备:
PPT课件,长方形的方格纸,小正方形纸若干。
教学过程:
一、预设情境、提出问题
出示主题***:老师家贮藏室长16 dm,宽12 dm,如果要用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块)。可以选择边长是几分米的地砖?
二、探究交流,抽象概念。
1、探究、了解公因数和最大公因数
(1)合作探究
提供学具,学生操作。
(2)反馈交流
得到:边长是1分米,2分米,4分米的地砖符合要求。
(3)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是8分米呢?
(4)了解公因数
a、引出猜想:
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的'都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
b、枚举验证
16的因数有:1、2、4、8、16 12的因数有:1、2、3、4、6、12 c、利用集合圈加深感知,引出公因数名词
(5)了解最大公因数
利用铺最少砖引出最大公因数名词。
2、巩固公因数和最大公因数的意义。
a、完成做一做。
b、巩固公因数与最大公因数的意义。
3、抽象出公因数和最大公因数的概念。
引导学生概括公因数和最大公因数的概念(教师板书)
三、尝试练习、探索方法。
1、尝试:求最大公因数:18和27 2、交流反馈。
四、巩固练习,完善新知。
1、找出下面每组数的最大公因数。
6和9 15和20 4和12 16和32
(完成后,解决成倍数关系的两个数的最大公因数的求法)
2、选择题
(1)16和48的最大公因数是_。
A.4 B.6 C.8 D.16
(2)甲数是乙数的倍数,甲、乙两数的最大公因数是_。
A.1 B.甲数C.乙D.甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
7/9 8/36 18/72 9/15 4、*小巧匠。
12 cm 16 cm 44 cm
要把它们截成同样长的小棒,不能有剩余,每根小棒最长是多少厘米?
(完成之后,完善公因数的概念。)
五、课堂小结:通过这节课的学习,你有什么收获?
MSN(中国大学网)
《最大公因数》小学数学优秀教学设计 篇三
教学内容
《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。
设计思路
这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。
教学目标
1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生***思考及合作交流的能力,能用不同方法找两个数的最大公因数。
4、培养学生抽象、概括的能力。
重点难点
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。
教具准备
多媒体课件、卡片
教学过程
一、导入
1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?
2、分别写出16和12的所有因数。
二、教学实施
1、老师用多媒体课件演示集合***。
指出:1,2,4是16和12公有的因数,叫做他们的公因数。
其中,4是最大的公因数,叫做他们的最大公因数。
2、完成教材第80页的“做一做”
先让学生***思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。
3、出示例2。怎样求18和27的最大公因数?
(1)学生先***思考,用自己想到的方法试着找出18和27的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
(3)老师用多媒体课件和板书演示方法
方法一:先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。
18的因数有:① ,2 ,③ ,6 ,⑨ ,18
方法三:先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。
27的因数有:①,③,⑨,27
方法四:先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。
4、完成教材第81页的“做一做”。
学生先***完成,***观察,每组数有什么特点,再进行交流。
小结:求两个数最大公因数有哪些特殊情况?
⑴当两个数成倍数关系时,较小的数就是他们的最大公因数。
⑵当两个数只有公因数1时,他们的最大公因数是1。
三、课堂练习设计(多媒体课件出示)
选出正确答案的编号填在括号里
1、9和16的最大公因数是( )
A 。 1 B. 3 C 。 4 D. 9
2、16和48的最大公因数是()
A 。 4 B. 6 C 。 8 D. 16
3、甲数是乙数的倍数,甲乙两数的最大公因数是( )
A 。1 B. 甲数C 。 乙数D. 甲、乙两数的积
四、课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、留下疑问
有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、课堂作业设计
教材82页第2题、第5题
板书设计
最大公因数
例2:怎样求18和27的最大公因数?
18的因数有:1 ,2 ,3 ,6 ,9 ,18
27的因数有:1 ,3 , 9 ,27
18和27的公因数有:1 ,3 , 9
18和27的最大公因数是9
读书破万卷下笔如有神,以上就是记得网为大家带来的3篇《最大公因数教学设计》,希望可以启发您的一些写作思路。
转载请注明出处学文网 » 最大公因数教学设计(优秀)