数学反比例函数知识点大全有哪些你知道吗?反比例函数是指如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0,x≠0)的形式,那么称y是x的反比例函数。一起来看看数学反比例函数知识点大全,欢迎查阅!记得网为您带来了6篇《高一数学知识点:反比例函数》,希望能对您的写作有一定的参考作用。
数学反比例函数知识 篇一
反比例性质
1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。
2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。
3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。求出k(此时不用具体求出点坐标)。
4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点 处的几何意义都相同的思想转化出面积问题。
5规律:若反比例函数***像经过多个点,那么在这几点处的几何意义是相同的。根据相等的关系我们可以将等积量转化成等比量。
6规律:当反比例函数与正三角形的某一边有交点时,可以根据正三角形的特性表示出该交点的坐标,从而计算出该点的坐标得到k。
7规律:当题目给出的线段之间的数量关系时,可构造直角三角形用相似的关系具体的求出点的坐标计算k的值。
8规律:当反比例函数解析式已知,而要求***像上点的坐标问题。同长情况下用全等或相似的关系将点的坐标用同一字母代数式表示出来,再利用k的几何意义求出点坐标。
9规律:直接利用面积比和相似比之间的关系确定k值。
10规律:当一次函数与反比例函数相交有特殊角度时(30°,45°,60°)或一次函数k为( √3/3 ,√3.。.。.)时,将所给的等量数据转化成反比函数***像上点的横纵坐标乘积(不用具体求出坐标点)得k值。
11规律:巧用k值,建立方程(方程组)解答。
12规律:类似反比例函数的问题,根据题目的特殊条件不用具体计算线段的长度,应用对比,转化思想解答。
13规律:给出反比例函数解析式,应用相似比与面积比之间的关系,面积与k之间的关系解答。
初中数学知识点:反比例函数的***像 篇二
反比例函数的***象:
反比例函数的***像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的***像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的***像属于以原点为对称中心的中心对称的双曲线,反比例函数***像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。◎ 反比例函数的***像的知识扩展
1、反比例函数的***象:反比例函数的***像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的***像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数***象的画法:(1)列表;(2)描点;(3)连线。
当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
常见画法当两个数相等时那么曲线呈弯月型。
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数***象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
推论内容:一次函数y=x+b或y=-x+b若与反比例函数
存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积
初中数学知识点:反比例函数的性质 篇三
反比例函数性质:
1、当k>0时,***象分别位于第一、三象限;
当k<0时,***象分别位于第二、四象限。
2、当k>0,在同一个象限内,y随x的增大而减小;
当k<0时,在同一个象限,y随x的增大而增大。
3、当k>0时,函数在x<0上为减函数、在x>0上同为减函数;
当k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
4、因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的***象不可能与x轴相交,也不可能与y轴相交。
5、 在一个反比例函数***象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|。
6、 反比例函数的***象既是轴对称***形,又是中心对称***形,它有两条对称轴 y=x ,y=-x,对称中心是坐标原点。
1、求反比例函数的解析式:确定解析式的方法仍是待定系数法,由于在反比例函数,只有一个待定系数,因此只需要一对对应值或***像上的一个点的坐标,即可求出k的值,从而确定其解析式。
2、反比例函数的应用:建立函数模型,解决实际问题。
其一般步骤为:①审题;②求出反比例函数的关系式;③求出问题的答案,作答。
用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数(k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
反比例函数知识点 篇四
反比例函数定义
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。 因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=k·x^(-1)。
反比例函数***像性质
反比例函数的***像为双曲线。
1、当 k >0时,反比例函数***像经过一,三象限,每一象限内,从左往右,y随x的增大而减小。
2、当k <0时,反比例函数***像经过二,四象限,每一象限内,从左往右,y随x的增大而增大。
反比例函数***像是中心对称***形,对称中心是原点;反比例函数的***像也是轴对称***形,其对称轴为y=x和y=-x;反比例函数***像上的点关于坐标原点对称。
知识点
1、过反比例函数***象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2、对于双曲线y= k/x,若在分母上加减任意一个实数m (即 y=k/x(x±m)m为常数),就相当于将双曲线***象向左或右平移m个单位。(加一个数时向左平移,减一个数时向右平移)
学好数学的方法 篇五
1、功在平时,学会总结:多做题,总结题型
考试时技巧重要,但是考试总要有平时的积累做铺垫的吧?数学的学习-平时最主要的就在于掌握知识点,多做类型题,用题目来巩固知识点,要学会用一道题型掌握一类题型。这样既节省时间,又能够灵活自如应对考试中千变万化的数学题型。
比如说数列求和部分:也就那么几个方法,构造等差等比、裂项求和、错位相减、倒序相加。有时候拿到一个题目你知道这样做,但是你不一定知道为什么要这样做,你知道这个套路就可以了。
2、考试时对试卷的把控:学会宏观把握
对于高考数学来说,大部分地区的试卷结构依次是选择题、填空题、大题。所以要根据自己实际掌握的情况,进行一个简单的分析,先易后难,把自己最有把握拿到的分拿到,那种特别难的最后再看。通过真题训练,你需要知道:选择题前几道是比较简单的,会考集合、复数、算法等(举例,仅限于个别地区试卷);从第几道题开始是比较难的,一般会考什么内容;第几道题是最难的题目。
只有这样对试卷的宏观把握,到了考场才能心里有数,并且针对自己的情况,作出具体的对策。
3、考试时间分配很重要:多拿分才是王道
有些同学是碰到一道题目,只要做不出来,就不甘心,非要把它做出来不可;还有一类学生是:一看题,不会,算了,下一道。其实这两类学生考试成绩都不会太理想,考试时一定要避免这两种极端行为,平时做题按部就班,一道一道的来,但是考试的时候以多拿分为原则。
针对这两种情况,一定要计划好自己考试的分配时间。一般来说:选择题和填空题为35-40分钟,大题一个小时15-20分钟,最后剩5-10分钟浏览考试卷,稍作检查,防止小粗心而失分。
4、熟悉题型:每种题型解题方法不一样
选择题排除,填空题猜测,大题写知识点和公式。
下面说到具体的应试技巧,当你面对一道题时,真的不知道准确答案,对于不同的题型也有不同的方法。
选择题有一个好处就是我们有四分之一对的概率,我们要做的就是提高这个概率,当然,排除肯定不可能对所有题是一个很好使的方法。填空题可以根据题干进行猜测,当然是在你不会的情况下。
对于大题,完全无从下手,也可以把你知道的知识点,或是公式写上,不一定就用到了,也能赚两分。最忌讳的就是留空白,不会就完全不动笔去写,留下一大片空白在那里,阅卷老师生气,你得分就无望了。
其实学习数学很简单,掌握了学习的方法和考试答题的技巧后,拿高分就容易多了。其实学霸并不是比大家聪明,只是更懂得学习的方法和技巧。
初中数学知识点:反比例函数的定义 篇六
一般地,函数
(k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由
,所以反比例函数,自变量x的次数为-1; (3)在反比例函数中,两个变量成反比例关系,即
,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。
自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。
反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数
(k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。
反比例函数的定义的教学目标
1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
上面内容就是记得网为您整理出来的6篇《高一数学知识点:反比例函数》,希望可以启发您的一些写作思路。
转载请注明出处学文网 » 高一数学知识点:反比例函数【最新】