数字信号处理论文范文第1篇
摘要:在对“数字信号处理”课程教学改革的实践中,采用分层教学模式对学生进行全方位的课程内容训练,有机地结合了理论和实践部分的内容,探索出更加符合学生们接受知识和应用知识学习规律的教学方法,提高了学生的创造能力、分析和解决问题的能力,效果良好。
关键词:数字信号处理;MATLAB仿真;教学改革
作者简介:李磊(1981-),男,河南南阳人,郑州大学物理工程学院,讲师;杨洁(1983-),女,河南商丘人,郑州大学物理工程学院,讲师。(河南 郑州 450001)
基金项目:本文系2012年度***大学生创新创业训练计划课题(项目编号:1210459084)的研究成果。
中***分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0056-02
“数字信号处理”课程是电子信息、通信工程、自动化工程及相近专业必修的专业课,在电气工程、测控技术、计算机技术等领域得到了广泛应用。[1]当前国家越来越重视大学生的创新意识和实践能力的培养。通过实施***大学生创新创业训练计划和卓越工程师计划,促进高等学校转变教育思想观念,改革人才培养模式,强化创新创业能力训练,增强高校学生的创新能力和在创新基础上的工程实践能力,培养适应创新型国家建设需要的高水平创新人才。为了提高学生的创新意识和应用知识解决实际问题的工程实践能力,需要调整“数字信号处理”课程的教学内容,引入新的教学手段和教学方法来提高学生学习的积极性,这是专业基础课教师所面临的重要课题。笔者介绍了一种针对本科生教学的分层教学模式,突破单一的理论灌输的教学弊端,显著提高学生们学以致用的能力,并运用实例介绍了这种分层教学模式。
一、“数字信号处理”课程教学现状
数字信号处理是一门理论性很强的课程,内容抽象,公式繁多,课程内容涉及很多数学推导与计算。目前,传统的教学模式主要存在以下问题:[2,3]
1.教学内容过度重视理论推导,不注重理论和实践相结合
国内大学的很多任课老师往往注重讲授公式性质、定理的由来,注重理论的严谨与正确性,这势必大大占据有限的授课时间。这种教学思路使课程陷于数学推导和计算,而使学生感到枯燥乏味,抓不住重点,教学效果大打折扣。
2.课程实验内容单一,与工程实践还有距离
课程实验内容一般都以MATLAB软件作为仿真平台,对课程中的时域离散信号、系统的时频域理论和数字滤波器设计理论进行仿真实验。诚然,MATLAB仿真软件作为信号处理的实验手段,具有信息量大、形象直观的特点,在很大程度上补充了单一的理论教学模式。但是仿真手段毕竟是理论的数学编程,还是脱离了工程应用的实际背景。仿真不能完全取代本课程的实验和实践内容。算法仿真内容过于形式化、过于简单,只能作为工程实践的前期阶段设计内容。
二、分层教学法原则与内容
传统的数字信号处理课程大多只讨论算法的理论及其推导,较少涉及工程实现方法及相应的软硬件技术。大学的教学应是理论教学、实践教学和科学研究为一体的,实践教学作为理论和科学研究的桥梁,是现有理论的源头,也是未来科研开拓的基础。理论课程应实现教学形式的多样化,包括多种实验、课程设计、科技竞赛和创新活动等。数字信号处理课程可以分为理论学习,算法仿真,数字信号处理工程应用平台实验,课题为导向的数字信号处理课程工程实践拓展训练四个层次。[4]
1.第1层:理论学习
广义来说,数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。目前本科生只是学***典的数字信号处理理论,主要包括有关数字滤波技术、离散变换快速算法和谱分析方法。因为教学时间有限,现代信号处理或者数字***像处理的内容只能根据项目需求有针对性进行学习和研究。教师可以鼓励学生去搜索相关文献,查找资料,激发他们的自学热情和能力。
2.第2层:算法仿真
算法仿真往往是电子信息工程实施以前必经的重要阶段。MATLAB语言具有强大的科学计算和可视化功能。它作为数字信号处理的有力助手,成为教学的重要部分。其以矩阵运算为基础,具有丰富的数值计算功能,强大的绘***功能,更重要的是具有完备的数字信号处理函数工具箱。比如FIR滤波器的设计,包含三种方法:程序设计法、FDATool设计法和SPTool设计法。其中FDATool(Filter Design & Analysis Tool)是MATLAB信号处理工具箱专用的滤波器设计分析工具,操作简单、灵活,可以采用多种方法设计FIR和IIR滤波器。在MATLAB命令窗口输入FDATool后回车就会弹出FDATool界面。SPTool是MATLAB信号处理工具箱中自带的交互式***形用户界面工具,它包含了信号处理工具箱中的大部分函数,可以方便快捷地对信号、滤波器及频谱进行分析、设计和浏览。学生可以采用MATLAB进行电子工程中算法的前期仿真,然后将MATLAB程序转换成C语言移植到硬件平台上。
3.第3层:数字信号处理工程应用平台实验
数字信号处理算法需要借助特有的硬件平台实现工程应用,采用的编程语言一般是C语言。目前数字信号处理系统的硬件实现方式一般有三种:(1)利用通用可编程DSP芯片进行开发的方式。由于是采用基于C语言进行编程,算法实现过程简单,但资源受到限制,并行度差。(2)采用专用集成电路ASIC方式进行开发。虽然效率高,但开发流程长,成本高,开发出来的系统不能更改。(3)采用FPGA芯片进行开发。可以提供高效率和高质量的数字系统。在实际硬件平台选型中,使学生能够对单片机、ARM、DSP、FPGA的应用领域加以区分,从而更加深刻认识到DSP和FPGA实现数字信号处理的巨大优势。
4.第4层:课题为导向的“数字信号处理”课程工程实践拓展训练
课题为导向的教学模式是提高学生实践能力的新型教学模式。它以大学生创新实验项目为平台,以基于案例为教学模式,以科学研究的方式组织和引导学生获取和运用知识,培养学生创新性思维和分析解决问题的能力。这种方式克服了教学和实验中单纯模仿的弊端,发挥学生的主观能动性,拓展学生的眼界,引导学生解决开放性问题,促使学生不断提出新问题、发现新问题和解决新问题。
以上这四个层次并不是单一的顺序递进关系,而是不断交互的关系。比如工程实际问题的解决过程往往促使学生回归理论学习层次去深入研究,反过来能够更好地去解决工程实践中遇到的技术难题。算法仿真采用的MATLAB语言需要转换成数字信号处理工程应用平台实验使用的C语言进行移植,这也需要第二层和第三层内容的不断交互。
三、教学实例
为了实现对学生实践能力的综合培养、潜力开发和工程创新精神的激励,学校积极为学生们搭建工程实验平台,为学生参加“全国电子设计竞赛”、全国挑战杯、大学生创新实验计划项目等活动奠定基础。下面基于***大学生创新实验课题“基于麦克风阵列声源定位的动态视频跟踪系统”来例证“数字信号处理”课程的分层教学模式。[5]
首先,学生们经过调研确定项目需求,选取合适的算法模型进行研究。基于课题驱动的教学模式促使学生从需求这个工程项目源头进行考虑。经过广泛的调研,学生们发现在日常生活中,常规的摄像头监控系统的摄像头安装是固定的,监控方位是静态的,只能监控有限的方位区间。这样的监控系统监控方位区间狭窄,难免存在很大的监控盲区,无法很好地实现监控功能。由人类的耳朵和眼睛协调工作的仿生原理得到启发,人类的耳朵相当于一个二元声音传感器阵列,捕捉到声源信息,通过大脑判断,得到声源的方位信息。然后驱动我们的脖子扭转到声源方向,我们的眼睛就可以实时看到声源目标,做出视觉的判断。为此,学生们用微型麦克风阵列来代替人耳,用一个步进电机来代替脖子,用摄像头代替眼睛,用DSP处理器来代替人脑实现信号的运算处理和控制功能,从而实现一个基于麦克风阵列声源定位的动态视频跟踪系统,如***1所示。这样,该视频监控系统通过麦克风阵列进行多传感器联合信号处理,可以首先根据声源的声音有无来判断是否启动监控,再通过声源的方位可以驱动步进电机,自动转动摄像头跟踪实时运动的目标,实现无盲区、全角度实时自动监控。
算法模型的确定促使学生广泛阅读文献,最终找到了阵列信号处理理论作为麦克风阵列数学建模的理论基础。通过MATLAB仿真分别分析了仿真的宽带音频信号和实验采集的音频信号,验证理论模型和实验结果能够很好地匹配。该本科生研发团队把宽频声音信号的特点和传统的远场声源方位估计算法相结合,依据到达时间差的声源定位原理,提出了一种频域波束形成算法,系统框***如***2所示。系统上电后,多路麦克风分别接收音频信号,并进行采样缓存,送入DSP处理器中进行端点检测,如当前信号为噪声或无用信号,则丢掉已采集的信号帧数据;如检测到有用信号,则对其进行频域波束形成和进一步处理,最后采用基于能量值的谱搜索算法计算出声源的方位,从而控制步进电机驱动摄像头转向声源所在方位,使声源出现在摄像头视野范围内。该课题针对当前智能视频监控存在的监控盲区的问题,提出并实现了一种基于麦克风阵列的宽频声源定位系统。通过采用频域波束形成和基于能量值的谱搜索算法,实现了二维空间声源的快速准确定位。经验证该系统在室内及室外对各种声源的实时响应表现良好,在现代视频监控中具有一定的工程实用意义。通过该课题学生们申请了实用新型专利和发明专利各一项,学术期刊论文2篇,了解了电子信息工程设计的步骤和培养了科学研究的基本素养。
四、结语
按照上述的分层次递进教学模式,使学生按照基础理论实验、仿真实验和DSP工程实现理论和实践的交互学习。这一体系从简单到复杂,从理论到实践,循序渐进,逐步提高。经过工程实践的训练,激发了学生们学习“数字信号处理”课程的热情,巩固了课本上的知识,拓展了工程实践的视野。同时,大大提高了学生们***解决问题的能力和工程实践创新能力。学生在专利申请和论文撰写的训练中,实践了科学研究的方法,为将来的科学研究奠定基础。通过上述的教学实践,取得了良好的教学效果,得到了广大师生的认可。
参考文献:
[1]程佩青.数字信号处理教程[M].北京:清华大学出版社,2007.
[2]王典.数字信号处理课程分类和分层教学模式探索[J].实验技术与管理,2013,(2):31-32.
[3]魏强,等.课题驱动式教学在《数字信号处理》课程中的探索与实践[J].教育教学论坛,2012,(20):212-213.
[4]杨述斌,等.数字信号处理实践教学的层次设计[J].实验室研究与探索,2009,28(2):123-125.
[5]李磊等.基于labview的声学相控阵视频监控系统[J].电子测量技术,2013,(4):11-14.
数字信号处理论文范文第2篇
【摘要】不同学科和专业背景的学生对数字信号处理的理解和应用角度会有不同,论文结合测控技术与仪器本科专业的特点和需求,在数字信号处理课程教学内容的完善、教学方法的革新等方面进行了探讨,得出:测控技术与仪器专业数字信号处理课程以强化物理过程及概念、增强应用能力为重点的建设方向。
【关键词】测控技术与仪器;数字信号处理;教学内容与方法
【Abstract】The view of comprehension and application of digital signal processing techniques vary with different major. Some discussion is apposed in the paper about the consummation and innovation of digital signal processing teaching contents and methods under the characteristic and demand of the major of measurement & control techniques and instruments.
【Keywords】measurement & control techniques and instruments, digital signal processing, teaching contents and methods
数字化和信息化的迅速发展,使得数字信号处理技术与应用在日常生活中的地位越来越突出,新的算法(或改进算法)层出不穷,新的器件频繁更替。对于仪器科学与技术学科下的测控技术与仪器专业,“数字信号处理”是一门重要的专业基础课程,该课程不仅理论性强,工程应用背景也十分明确。作为一门涉及面广的学科专业基础课程,如何与学科的应用需求接轨、与学生的知识体系融合,改革教学内容与授课方法,全面提高教学质量与效果,与时俱进、科学发展,创建有专业特色的示范性课程是课程组面临的问题。
论文以学校课程体系建设的目标与要求为出发点,结合国防科学技术大学测控技术与仪器本科专业的特点和建设需求,在“数字信号处理”课程教学内容的完善、教学方法的革新等方面进行了探讨,提出了一些观点和看法。
1 学科与专业对数字信号处理的专门需求
仪器是信息获取、处理与应用的工具,而仪器学科与技术则是研究以获取信息为目的的信息转换、处理、传输、存贮、显示与应用等技术与装置的应用科学,其核心内容可以用四个关键词概括,即:计量、测量、仪器和传感器[1]。没有测量就没有科学,仪器科学与技术的领先程度决定了科研和生产的先进程度和竞争能力[2]。从这个角度来看,测控技术与仪器专业更加强调数字信号处理的物理意义,也就是信号对象的物理属性,包括:时间属性、频率熟悉、误差范围、测量精度等。
目前该校仪器科学与技术学科逐渐形成了以现代传感技术及系统、空间仪器工程、无线电测量理论及应用为主要方向,以信息获取与处理为主要内涵的省重点特色学科,本科专业为测控技术与仪器,要求学生掌握信号采集、分析与处理等方面的基础理论与技术,在测控、测量及测试等方面具有良好的理论素养和技术基础。开设了“电工与电路基础”、“信号系统与控制”、“数字信号处理”、“现代测试系统”等一系列专业课程。主要课程见表1。
表1:测控技术与仪器主要专业课程情况
从表中可见“数字信号处理”首当其冲成为一门重要的专业基础课,并且为测控技术与仪器专业服务,有着明显的信号采集、测量、微弱信号检测、仪器系统设计等方面的应用需求。在本专业知识体系中,“数字信号处理”紧密连接传感器的信号调理,与信息转换、处理甚至是传输和存储等有密切的关系,其内涵更加偏向于真实信号物理量的采样与处理,目标更加注重于数字信号的物理意义和应用方向。课程内容包括:采样过程及误差分析、离散时间信号与系统、离散变换及其快速算法、数字滤波器设计、数字信号处理系统的实现、多采样率信号处理等。课程将通过讲授、练习、实验使学生掌握数字信号处理的基本理论和方法,并能使用软硬件工具进行相应的数字信号处理工作。
2 依据学科专业特点改革教学内容与方法
根据课程体系建设的需求,在教学内容与方法方面尝试提出了如下建设目标:
2.1 结合学科专业特点,吸收国外先进教学理念,与国际著名院校课程内容设置充分融合,以经典“数字信号处理”课程体系为基础,以现代测量系统中备受关注的信号处理方法和技术为导向,紧扣真实信号物理量采样与处理的学科背景,结合国外相关专业知名教材,在专业课程体系内将教学的内容、课程间的关系与教学实践紧密配合一起,积极梳理课程体系之间的关联,根据学科和理论技术的发展,科学地完善教学内容。
2.2 开拓国际化视野,充分采用启发式、交互式、研讨式的教学方法和课堂、网络和实践相结合的教学手段;尝试通过引进国外教学名师开展课外专题讲座,提高学生的兴趣、拓展学生的专业思路,提升授课效果;用仪器科学与技术大专业的通识教育理念,建立典型案例素材库,完善学生的专业知识体系及应用能力;结合科研条件,采用软件仿真和硬件验证相结合实践教学系统,实践环节的比重达到30%以上;网络教学突出互动性,答疑和研讨环节能够通过网络教学平成。
3 开拓思路积极探索改革举措
测控技术与仪器专业学生有着明显的工程技术培养需求,“数字信号处理”课程是专业理论和实践相结合的桥梁,必须结合学科特点,与国际化教学内容融合,与电工技术、信号系统与控制等课程密切配合、融合[3,4],充分体现测控技术、仪器、传感器对信号处理的更高要求和需求、拓展数字信号处理的广度和深度,在无线电测量、精密仪器信号处理和微弱信号处理等方面突出授课重点,为学科专业打下坚实基础。举措如下:
3.1 结合学科专业特点,与国际著名院校类似专业课程内容设置充分融合,将教学的内容、课程间的关系与教学实践紧密配合一起,充分提升授课效果,结合学科需求,将“数字信号处理”教学内容与国际接轨,并能根据学科和理论技术的发展而动态适应。
优秀教材与普通教材的区别,并不在于内容及其先进性,也不仅仅在于语言,主要在于教学的理念和方法[5],对于本专业的“数字信号处理”课程更是如此。因此必须融合国外教材和国内教材的特点,合理安排教学内容的讲授方式、时机与深度,引入概念方法时,注重启发性、直观性,可使学生先知其然,而后再知其所以然。在叙述方式上,同一内容由浅入深,在不同章节,从不同层次加以阐述,力***体现各部分间有机联系;同时注意结合自上而下和自下而上的方式,注重启发、实用的同时,多帮助同学拎出主线和脉络[6],如表2所示。必要时做一些知识补充,以使学生不仅掌握一些具体的原理、实用的方法,还建立起比较系统的认识,以供进一步深造之需。
表2:数字信号处理课程内容分类
3.2 结合“电工与电路技术基础”、“信号系统与控制”课程内容,与之优化整合,使“数字信号处理”课程内容与专业课程体系融会贯通。用仪器科学的通识教育理念,优化“数字信号处理”课程的授课内容、提升授课效果,完善学生的专业知识体系及应用能力。
“电工与电路技术基础”、“信号系统与控制”和“数字信号处理”三门课程构成了专业体系中重要的“电路、系统、信号分析与处理”基础课程体系。“电工与电路技术基础”课程主要学习电路基本理论与分析方法相关的经典理论;“信号系统与控制”课程主要学习确定性信号的时频域分析方法,线性时不变系统的描述方法与特性,以及线性时不变系统的变换域分析方法;“电工与电路技术基础”和“信号系统与控制”是“数字信号处理”的理论基础,“数字信号处理”是“电工与电路技术基础”和“信号系统与控制”在离散域中的深入扩展与应用。
然而,传统情况下“电工与电路技术基础”、“信号系统与控制”和“数字信号处理”课程各自施教,在一定程度上存在授课内容重复、衔接不合理、综合不够等诸多问题,这些问题随着教学计划的修改和课时的减少显得更加突出。如,在 “电工与电路技术基础”课程中,已涵盖了许多“信号与系统”课程中连续信号与系统分析的相关内容,而“数字信号处理”课程中也存在“信号与系统”课程中大量离散信号与系统分析内容的重复[3]。各门课程自身内容体系的最优不一定是整个教学计划的最优,因此,有必要结合“电工与电路技术基础”、“信号系统与控制”课程内容,与之优化整合,使“数字信号处理”课程内容与专业课程体系融会贯通,如此才能更好地完善学生的专业知识体系及应用能力。
3.3 仪器科学与技术是一个应用性较强的学科,“数字信号处理”是应用性很强的课程,因此该课程的教学应该是理论、实践和科学研究的三元一体。
理论教学主要是通过课堂教学环节完成的。在教学过程中,应强调基本概念的建立和基本内容的深刻理解,淡化公式的推导和解题技巧,强化所学知识的综合应用能力与创新能力的培养。加大教学内容和课程体系改革,建设形式上理论教学与实践教学***设课,内容上互相交叉和融合,分层次按需设置的完整的理论和实践教学体系[7],通过实践教学和简单的科学研究思路,增强学生对基础理论的认识,强化学生理解能力,深刻了解“数字信号处理”与专业相关课程的联系。
配合课程教学预先安排了4 个教学实验,要求学生用Matlab进行原理仿真,通过之后并在采样信号处理综合实验系统上进行调试和运行,从而锻炼学生对理论知识的掌握与应用能力,以及简单的科研能力。如表3所示。
表3:数字信号处理课程的教学实验内容
3.4 将授课效果作为第一评判标准,采用启发式、交互式教学方法、通过多媒体、网络、专题讨论课等方法,提高学生对课程的掌握程度;在支撑学科发展的大视野下,根据课程在学科课程体系中的地位和作用,改革传统教学手段,理论联系实际,培养学生的创新思维和创新能力,加强梳理与其他课程或竞赛之间的相互关联,全面提高学生专业应用素质。
下面以文献[6]中的实例为例,说明教学方法和教学手段的效果。在讲授序列的傅里叶变换(DTFT)和离散傅里叶变换(DFT)时,学生很难理解这两种形式傅里叶变换的区别。实际上,DTFT和DFT都是从频谱分析的角度来分析一个序列。对于DTFT,只要该序列满足绝对可和的条件,则它的傅里叶变换一定存在且连续,由于其一个域是连续的,因而不适合在计算机上运算。而DFT是专门针对序列“有限长”的特点而提出的,其频谱也是离散的,因而适于在计算机上运算,同时也可以通过快速傅里叶变换(FFT)实现。为了让学生不产生混淆,在教学过程中,可以利用MATLAB进行现场仿真,让学生通过仿真结果直观掌握二者的关系和区别。实验中,采用矩形序列x(n)=R5(n),N=32。其中***a是序列的波形***及其DTFT变换的连续谱,周期为2π,***中显示的为主值区间([0,2π])频谱。***b是通过16点和32点FFT来实现的序列DFT变换,其中***线的包络即为信号的DTFT连续谱,从中明显可以看出,DFT实际上是对主值区间上的DTFT连续谱在频域进行抽样,抽样点数即变换的点数。通过这样的现场仿真分析,学生很容易掌握和理解DTFT和DFT的关系和区别。
***1:一种启发式多媒体教学手段实例[6]
3.5 教师回归“师者”的本位——传道、授业、解惑,加强疏导,发挥学生主动性。所谓传道就是传授其中的基本规律和变化趋势,引领学生入门;授业是传授解决问题的方法和技能,发挥学生主动性;解惑就是答疑,持续发现并消除学生心中的疑惑。通过深入浅出、抓重点、理脉络的方式解答学生在课程学习过程中的疑惑,提高其提出问题、分析问题、解决问题的能力。“授人以鱼,不如授人以渔”。
4 结束语
“数字信号处理”是一个理论实践性都很强的课程,每个学科对其应用和理解都可能会有所偏重,因此在教学内容与方法探索上应该认真分析本专业课程建设需求与现状,不断研究解决教学内容与方法建设中存在的问题,全面归纳、总结经验,在充分研讨的基础上对教学内容与方法进行详细地规划,才持续地推进“数字信号处理”课程建设水平和授课效果,优化学生知识体系结构,满足学科专业对本课程的需求。参考文献
[1] 潘仲明,仪器科学与技术概论[M],北京:高等教育出版社,2010:1
[2] 殷纯永,仪器科学与技术发展建议[J],中国机械工程,2000,11(3):264~266
[3] 李俊生,张立臣,蒋小燕,“电路分析”、“信号与系统”和“数字信号处理”课程的优化整合[J],常州工学院学报,2009,22(6):89~92
[4] 谢守清,胡毅,“信号与系统”和“数字信号处理”的优化教学[J],电气电子教学学报,2009,31(6):18~21
[5] 王国富,尚小梅,数字信号处理课程建设与实践[J],桂林航天工业高等专科学校学报,2008,13(3):84~85
[6] 刘会衡,田玲,数字信号处理课程教学方法改革与实践[J],教学研究,2008,31(3):237~239
[7] 朱冰莲,数字信号处理精品课程建设的探索[J],高等建筑教育,2007,16(2):95~97
数字信号处理论文范文第3篇
摘要:“信号与系统”和“数字信号处理”是信息科学和电气工程等专业的专业核心课程。目前这两门课程的内容存在交叉重复,学时浪费的问题。针对这一现象,宿迁学院正在对这两门课程进行整合优化,建立新的课程体系。对教学内容、教学方式、实验教学等方面进行了探索与实践。
关键词:信号与系统;数字信号处理;课程整合
作者简介:张瑜慧(1979-),女,江苏盐城人,宿迁学院三系,讲师。(江苏 宿迁 223800)
中***分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)01-0100-02
“信号与系统”和“数字信号处理”课程是高等学校信息科学和电气工程等专业重要的基础课程。两门课程的教学内容有着不可分割的内在联系。在“信号与系统”的教学中,连续信号与系统在前,离散信号与系统在后。因此“信号与系统”课程实际上是“数字信号处理”的基础课程。这两者的内容虽然互有侧重,各成体系,但依然出现授课内容重复、衔接不合理、综合不够等诸多问题,因此不少论文针对这些问题进行了探索研究。[1-3]文献[4]指出,在相当长时间内,课程的基本理论内容将保持相对稳定,在课程中不断更新,增加应用实例分析,将成为课程改革的主题。与此相应,必须注重加强综合性大作业练习和Matlab 实验。当然这些观点对于“数字信号处理”课程也是适用的。
结合多年在两门课程的教学经验,论文将对这两门课程的相互关系以及教学思路和方法进行探讨,以期能克服这两门课程在设置和课堂教学实施中存在的一些问题,提升两门课程的教学效果。
一、课程设置弊端
目前在大多数高校的相关专业都开设了“信号与系统”和“数字信号处理”课程,但这两门课程的设置普遍存在一些弊端,主要表现为:
“信号与系统”课程和“数字信号处理”课程内容有部分混叠。现行绝大多数“数字信号处理”教材,对离散信号与系统的分析、Z变换等内容都做了系统的分析,这部分知识点与“信号与系统”中的内容基本重复。正是由于两门课程的主要内容存在一定篇幅的重复,按照课程教学计划实施教学,会使部分内容重复讲授,造成有限课时的浪费。因而在高校缩减课时的总体趋势下,相关专业对课程内容进行优化整合具有现实意义。
“信号与系统”和“数字信号处理”课程中有关离散信号与系统分析,以及Z变换等部分内容缺乏统一性、完整性和系统性。两门课程虽然都是对信号和系统进行讲解,却没有形成有机的整体,在教学过程中经常存在配合不好的现象。而在课程开设时,学校为了课程各自体系的完整,出现授课的重复性和不相关性等问题,对学生系统掌握连续和离散信号与系统的分析人为制造了障碍。
两门课程都具有理论性过强,不易理解,而实际应用较少的特点。厚厚的教材、大量的数学公式及推导过程、众多需要理解和掌握的知识点,加大了学习的难度,使学生在学习过程中形成畏惧心理,又对后续课程的学习丧失兴趣和信心。另外,课程缺乏“新鲜元素”,绝大多数教材没有介绍信号最新的技术和发展趋势,教师在授课时也会因为课时问题而忽略这部分信息,以至于使部分学生认为学习“信号与系统”课程和“数字信号处理”课程缺乏实用性,降低了学生学习的兴趣和动力。
正是课程在设置时存在的这些问题,在某种意义上给教师授课和学生学习带来一定困难。针对这些问题,论文将结合本院课程体系现状,分析这两门课程优化整合的思路。
二、宿迁学院课程体系现状
在本院电子信息工程专业,“信号与系统”课程开设在本科第四学期,“数字信号处理”开设在第五学期,经过长达两个月的假期,学生对很多内容产生遗忘的现状,这就为“数字信号处理”的学习带来困难。因此,“数字信号处理”课程的前几章主要涉及离散信号与系统的时域分析以及Z变换,这部分内容实际在前面课程已经讲授过。文献[5]的作者结合其专业的具体情况,经过3年的对比教学,得出在“数字信号处理”课程的开始前,以8个学时来复习“信号与系统”课程的基本概念和理论是最佳的教学方式的结论。
然而,本院电子信息工程专业的教学计划中,“信号与系统”理论50学时、实验10学时,“数字信号处理”理论40学时、实验5学时,这两门课程的学时较少。由于“信号与系统”课程教学内容多,而课时偏少,在一个学期将本该70课时左右的课程压缩到50课时,具有很大难度。因此,把离散部分的许多基本内容留给后续课程讲解,如离散信号与系统的时域与Z域分析这部分内容主要放置在“数字信号处理”中讲解,将有限的课时用于连续信号与系统的分析讲解,这更有利于提高课时利用率。另外,结合课程特点,为了促进学生对理论知识的理解和掌握,本院将一定数量的习题课改为学生课后习题,并结合课程考核以督促学生***认真完成,通过这种做法,将有限课时用于课程内容讲授和师生互动。
三、课堂教学方式和方法
1.启发式教学
这两门课程都具有自身内容抽象,仅凭想象难以理解的特点,教师照本宣科将使学生感到烦躁,丧失学习兴趣,在具体教学中运用了以下教学方法:第一,采用“类比”的方法。教师根据“信号与系统”特有的对称特性,按连续时间信号与系统的分析方法,采用类比方法分析离散时间信号与系统。在傅里叶变换的基本性质和拉氏变换的基本性质等的讲解中也采用了该方法;第二,课堂教学尽可能体现“提出问题、分析问题和解决问题”这个过程。在教学中教师通过问题来启发、引导学生积极思考和分析问题,尽量让学生在实践中解决问题,使学生在课程学习过程中逐渐提高学习的兴趣和能力。
2.传统教学与现代电教法的结合
传统教学主要以教师板书,学生记笔记为主,虽然具有思路详细、公式定理推导严谨的优点,但这种“满堂灌”的教学方式在增加教师劳动强度的同时,沉闷的课堂气氛也降低了学生学习的兴趣。现代电教法在授课时虽然能有“声”有“色”,但是过多的感官刺激也会使学生***,另外,电教法在课堂教学中普遍存在信息容量大的问题,相比传统教学法,学生需要接收更多信息,如果课后学生未及时复习整理,将会出现课堂热闹,下课作业困难,学生考试成绩不理想的现象。传统教学与现代电教法为主的教学模式各有优缺点,在教学中扮演着各自不同的角色,教师取长补短、灵活应用不同的教学方法,才能改善授课效果。因此在教学过程中,笔者根据课程的特征灵活应用多种教学方法,如以电教法为主,传统教学为辅的教学模式,以提高教师授课效率和学生学习兴趣。
电教法可以分为“多媒体教学”以及“网络教学”两种模式。多媒体教学主要指教师课堂授课使用多媒体辅助教学,这要求备课时准备课件。***文并茂的视觉演示为抽象概念的讲解提供了方便,另外多媒体教学还可以增加较多的应用示例,拓宽学生的知识面,提高学生的学习兴趣。但这种教学方式也存在一些缺点,如过多的视觉冲击会造成学生视觉疲劳。
为了弥补传统教学模式与多媒体教学手段的局限性,本院正在积极建设“信号与系统”网络课程。课程网站为学生自主学习创造了条件,提供了帮助和指导。教师将课程教学大纲和学习要求、教学课件、习题、模拟试题及实验教学等资源放置在课程网站上,可以方便学生自学。而网络课程中的***交流模块,方便了教师对学生进行教学指导和答疑,加强了师生之间的交流,提高了学生学习的兴趣。当然教师应该引导和督促学生访问课程网站,积极利用丰富的学习资源。比如将传统的纸质作业上网,要求学生登录自己的帐号,完成规定数量的习题并实时由系统打分,在课程考察时将这部分成绩纳入期末成绩。网络课程可以克服传统教学对教学时间、教学地点的限制,促进教学质量的提高。
四、实践教学
实践教学可以使学生对信号及信息处理领域有一个全面的认识,因此实践教学是至关重要的一个教学环节,合理安排实践教学对课程的学习很重要。本课程的实验教学可以结合Matlab 软件应用安排编程练习。目前,这种做法已取得国内、外广大任课教师的共识。[4]本院这两门课程实验主要采用Matlab软件仿真的方式,主要由验证性实验和综合设计性实验组成。验证性实验是为了培养学生的实验动手能力和数据处理等其它技能。比如在“信号与系统”的验证性实验中,设计了用Matlab 软件实现常见连续和离散信号,通过这个实验,学生可以初步了解使用Matlab软件编程实现一些简单函数的方法,为后继设计性和验证性实验打下基础。在进行了一定数量的验证性实验之后,就可以进行综合性实验。综合设计性实验要求学生根据实验要求编写程序,获取仿真结果,并对结果进行分析总结,并完成相应思考题。这能够培养学生分析、解决问题的能力,提高学生设计的能力。
五、结论
结合近几年对这两门课程的教学实践和思考,笔者认为“信号与系统”是“数字信号处理”的基础课程。“信号与系统”的课程重点在于连续信号和连续系统的分析和处理上,强调信号和系统的一些基本概念和傅立叶变换、拉普拉斯变换以及Z变换三大基本变换的学习,使学生建立起信号与信息处理类课程学习的思维方式与方法。“数字信号处理”课程教学重点是离散信号和离散系统的分析与处理,强化学生工程设计以及工程应用的思想,为后续课程提供理论基础和技术支持。
理顺课程之间关系,明确各课程的任务和地位,统一规划才能使课程之间很好衔接。课程体系的建设以及整合优化是一项系统工程。教师在长期教学实践过程中,只有不断发现和思考问题,积极解决教学中存在的一些问题,进一步改进和完善教学工作,才能取得更好的教学效果。
参考文献:
[1]罗鹏飞,吴京,张文明.信号处理系列课教学改革与实践[J].高等教育研究学报,2009,32(2):82-84.
[2]周小微,金宁,胡建荣.信号处理课程群教学改革的实践与探索[J].中国电力教育,2011,(1):86-87.
[3]罗轶.“信号与系统”与“数字信号处理”课程整合的研究与实践[J].吉首大学学报(自然科学版),2011,32(1):117-119.
[4]郑君里,谷源涛.信号与系统课程历史变革与进展[J].电气电子教学学报,2012,34(2):1-6.
[5]刘洪盛,朱学勇,彭启琮.“数字信号处理”和“信号与系统”两课重叠内容的处理方法探讨[J].电气电子教学学报,2004,26(6):40-42.
数字信号处理论文范文第4篇
【摘要】针对目前数字信号处理教学中存在的实践环节较抽象,不利于学生深入理解的问题,进行了教学实践方法的探索和改革。在教学实践环节中引入全新的数字信号处理开发工具DSP Builder,可以将Matlab中编写的数字信号处理算法,直接在FPGA器件中得以实现,可以实现信号的实时***观测,使得学生对所学数字信号处理的理论知识能有更生动的体会和更深刻的理解,增强学生的学习兴趣,提高学生理论联系实践的能力。
【关键词】数字信号处理 DSP Builder 教学实践环节
【基金项目】论文由“上海理工大学‘精品本科’系列研究项目”专项资助。
【中***分类号】G642.0 【文献标识码】A 【文章编号】2095-3089(2016)35-0231-01
数字信号处理是一门的重要专业基础课,由于理论性很强、比较抽象,对于听课的学生和授课的教师均是一个难点。为了能让学生深入的体会和学好数字信号处理的理论知识,教学实践环节是必不可少的。
1.数字信号处理教学实践环节的现状
目前在数字信号处理课程的教学实践环节中,较为普遍的是采用MathWorks公司的数学分析软件Matlab,学生通过Matlab软件编程对数字信号处理的理论知识进行仿真和验证,这种通过纯粹软件编程进行仿真验证的实践方法仍然是比较抽象的,不利于学生对所学知识的深入理解,也不利于理论联系实践。
国内一些高校开始采用Matlab编程与可编程逻辑器件相结合的方法来进行该课程的实践教学,这种将软、硬件平台相结合的方法是一个很好的尝试,但它需要学生在熟悉可编程逻辑器件的基础上,熟练进行硬件描述语言(HDL,hardware description language)的编程,这样就容易使学生在掌握软件使用和熟悉硬件平台等方面花费过多的时间,从而忽视了对数字信号处理课程本身一些重要理论和概念的理解与掌握,达不到教学实践目的。因此,需要对本课程教学实践的方法进行探索和改革。
2.教学实践方法的改革
2.1教学实践方法的思路探索
需要找到一种简单易行的方法,使得数字信号处理的理论算法可以在硬件上得以实现,并且可以通过嵌入式测量软件(如:QuartusII中的SignalTapII Logic Analyzer)对信号的处理结果进行实时***观测,那么学生必然会对所学的理论知识能有更生动的体会和更深刻的理解,增强学生的学习兴趣,提高学生理论联系实践的能力。
鉴于学生在前期课程中已学习过可编程逻辑器件FPGA的相关知识,而FPGA是一种实现数字信号处理的通用硬件器件,如果能够通过一种简单的操作将数字信号处理的理论算法在FPGA器件中得以直接实现,那么就能起到事半功倍的学习效果。
2.2 DSP Builder工具软件的特点
在数字信号处理中Matlab是用作算法开发和仿真的软件,而DSP Builder通过Matlab中的Simulink模块将Matlab的算法开发和仿真与硬件描述语言(HDL)的综合、仿真和Altera开发工具整合在一起,实现了这些工具软件的集成,从而使学生在进行系统级设计、算法设计和硬件设计时共享同一个开发平台,并且不需要过多关注硬件设计方面的知识和硬件描述语言的编程,同时,DSP Builder是作为Matlab中Simulink模块的一个工具箱出现[1],使得学生可以通过Simulink***形界面调用DSP Builder工具箱中的提供Altera知识产权核(IP core, intellectual propert core)MegaCore进行DSP系统设计,因此学生只需要掌握Simulink的使用即可,并不需要花过多的精力熟悉DSP Builder的使用。
2.3 DSP Builder应用于教学实践
应用DSP Builder在教学实践中进行基于FPGA的DSP系统开发,整个设计流程是基于Matlab的Simulink模块,DSP Builder和QuartusII的,包括从系统描述到硬件实现都可以在一个完整的设计环境中完成,构成了一个自顶向下的设计流程。它主要分为以下几步[2, 3]:
(1)利用Simulink模块、DSP Builder模块以及IP核模块Matlab的Simulink模块中对DSP系统进行建模,只需双击系统中的模块就可以对该模块进行参数设置,同时可以基于Simulink平台仿真验证所搭建DSP系统的功能。
(2)利用DSP Builder具箱中的Signal Compiler模块,将Simulink模块文件(.mdl)转换成RTL级的VHDL硬件描述语言代码描述以及用于综合、仿真、编译的TCL脚本。
(3)在得到VHDL文件后,设计者仍然可以通过Signal Com?鄄piler自动调用综合工具和编译工具。目前DSP Builder自动流程中支持的综合器有QuartusII, Synplify和Leonardo Spectrum。综合后产生的网表文件送到QuartusII中进行编译优化,最后生成编程文件和仿真文件,即利用生成的POF和SOF配置文件对目标器件进行编程配置和硬件实现,同时生成可分别用于QuartusII的门级仿真文件和Modelsim的VHDL时序仿真文件以及配套的VHDL仿真激励文件,可用于实时测试DSP系统的工作性能。另外,设计者也可以在Simulink外手动调用其他C合工具和编译工具。
(4)针对第二步中生成的VHDL,利用自动生成的Modelsim的TCL脚本和仿真激励文件所做的仿真为功能仿真,而当由QuartusII编译后生成的VHDL仿真激励文件和Modelsim的TCL脚本进行的仿真为时序仿真。
(5)最后将QuartusII生成的配置文件***到目标器件中,形成DSP硬件系统。
2.4教学实践的实施步骤
(1)教授学生使用DSP Builder进行基于FPGA的DSP系统开发的过程。
(2)设计出利用DSP Builder进行数字信号处理教学实践的典型题目。
(3)让学生将Matlab中编写的数字信号处理算法,直接在FPGA器件中得以实现。
(4)对信号的处理结果进行实时测试,解决数字信号处理中的实际问题,切实做到理论联系实践。
3.教学实践的效果
在数字信号处理的教学实践中,应用DSP Builder在FPGA器件上实现数字信号处理的算法,使学生在设计过程中摆脱了繁琐的具体硬件设计,将更多的精力关注在数字信号处理算法设计的实现上,对所学数字信号处理的理论知识能有一个更生动的体会和更深刻的理解,增强学生的学习兴趣,提高学生理论联系实践的能力,取得了良好的教学效果。
参考文献:
[1]杨守良. Matlab/simulink在FPGA设计中的应用[J]. 微计算机信息,2005(8):[98].
[2]王前,李韬. 基于DSP Builder实《现数字信号处理》实验教学新方法[J].实验技术与管理,2005(9):[75].
[3]Altera, Corp. Dsp Builder User Guided[S].
数字信号处理论文范文第5篇
摘要:随着信号处理应用的日益广泛,工科专业中数字信号处理课程的重要性也日渐凸显.因而,传统的教学方法无法满足该课程教学内容繁杂及实践性强的要求.根据数字信号处理课程的特点,将研究性教学引入到课程的理论与实践教学环节,同时结合综合设计性实验和大学生全程实践,全面提升学生的理论水平及实践创新能力.
关键词:数字信号处理;研究性教学;实践教学
随着语音信号及***像信号处理技术的快速发展,数字信号处理技术得到了广泛的应用.同时,数字信号处理课程作为工科专业一门非常重要的专业基础课程,上承高等数学、信号与系统等基础课程,下接语音信号处理、***像信号处理等专业课程,在学生构建专业知识体系的过程中起到非常重要的作用[1].但是,由于该课程理论性与实践性并重、数学公式繁多,学生学习起来难度较大,尤其是在一些应用型本科院校中,学生基础较差,学习能力不强,更容易出现学生怕学、学不好,教师怕教、教不好的怪象.在数字信号处理的教学过程中,如何做到既让学生掌握基本概念和原理,又能帮助学生将所学知识应用于解决实际问题,从而使学生体会到学习的乐趣而激发学生学习兴趣.这一问题的解决必须从实践环节入手,将理论与实验合理结合,帮助学生构建完备的知识体系,使学生学以致用,用以助学.
1研究性教学理论介绍
近年来,研究性教学成为了国内外高校大力倡导的一种教学模式,在高校本科教学中得到了广泛的应用[2].该方法通过在教学过程中引导学生研究特定选题,实现对所学知识的掌握和提高,并在这一过程中培养学生的创新能力及研究品格[3].因而,研究性教学不是简单的“填鸭式”教学,而是学生必须在教师引导下对知识进行反思、批判和探究的过程.在研究性教学过程中,教师的作用不再局限于传授学生知识,而要以学生为中心设计教学过程,为学生提供所需的教学资源[4].在教师讲授过程中,侧重于学习方法的介绍及学生创新思维的培养,同时教师作为主导者控制学生的整个学习过程,对学生的学习效果进行恰当的评价.
2数字信号处理研究性教学的独特性
本文所提出的数字信号处理的研究性教学方法不同于常规课程的研究性教学方法,它特别侧重实践动手能力的提高和创新思维的培养.在该课程中实施的研究性教学要将理论课教学与实践教学结合起来,利用综合设计性实验及大学生全程实践活动来提升理论教学水平,培养学生实践应用能力.
2.1数字信号处理内容体系的独特性
数字信号处理作为电类专业一门非常重要的专业课程,它的重要地位毋庸置疑.但是由于其理论性与实践性要求都很高[5],而且与信号处理类课程群内其他课程联系紧密等特点,其内容体系具有一定的独特性.
2.1.1学生能力培养的二重性
数字信号处理对于学生能力培养具有二重性,其一是培养学生数学思维能力,利用工程数学相关理论分析信号的生成及变换过程,这有利于培养学生严谨的逻辑思维能力;其二是鼓励学生学以致用,将理论课所学知识应用到解决信号处理实际问题中,如FIR滤波、语音信号采集等.
2.1.2理论教学与实践教学的并重性
数字信号处理课程理论课概念繁多、公式推导复杂[6],学时紧张(仅为51学时)而内容多的矛盾比较突出.实践教学作为理论课的合理补充及有效升华,其地位显而易见,但其学时数仅为15学时,还承担DSP器件的基本技能训练.所以,二者在教学中的并重地位和学时紧张的问题都同时存在.
2.2研究性教学与数字信号处理结合的独特性
在数字信号处理的研究性教学过程中,必须将理论课与实践课紧密结合,课内学时与课外活动结合起来,这是其他课程的研究性教学中很少采用的方法.这种教学方法的独特性在于对教师的理论与实践教学水平的要求都比较高,要求在教学过程采工程数学、信号与系统、DSP和EDA等多门课程知识,帮助学生在学习本门课程的同时开拓视野.
3理论与实践并重,课内与课外结合的研究性教学实施
以FIR滤波器的设计为例,展开研究性教学过程.
3.1理论课教学过程
在理论课上,教师首先为学生传授数字滤波器,特别是FIR滤波器的理论和设计方法.其次,向学生提出一些具有实际意义的滤波器设计要求.让学生分别从理论与实践的角度设计数字通信系统中常见的截止频率为8000Hz的低通滤波器.学生按照学习小组的模式,多人合作设计该滤波器.设计过程要求学生采用数学推导、查表法及MATLAB软件实现FIR滤波器的仿真设计[7],最后要求学生形成设计报告.最后教师利用课堂时间,对比分析学生的不同设计方案,指出学生在设计过程中的可取之处及待改进的地方.同时,为学生进一步利用DSP实验系统设计该滤波器做知识上及思路上的铺垫.
3.2课内实验教学过程
由于课内实验仅有15学时,其中前6学时用于CCS3.3软件及TI公司5416芯片系统的学习.因而,留给理论知识点的实践反馈学时很少,但诸如快速傅里叶变换、圆周卷积、FIR滤波器及模拟信号数字化等知识点都需要在实践环节加以巩固.所以,常规的基础验证类实验项目无法达到全面培养学生实践能力的目的.采用综合设计类实验代替原有实验项目,力争一个实验项目能从多方面培养学生动手能力,提升理论知识掌握程度.如FIR滤波器的设计要求学生完成语音信号的采集、模/数转换、低通滤波和数/模转换等工作,而不局限于滤波的实现[8].同时,为了激发学生的学习兴趣,增加实验项目的生动性,实验项目选择一些流行乐曲作为语音材料,要求学生经过实验设计完成乐曲的重低音化,滤掉高频分量.
3.3全程实践教学活动过程
为了弥补课内实践学时的不足,充分利用学校开展大学生全程实践活动的有利契机,在学生的全程实践环节开设“基于EDA技术的FIR滤波器的设计”这一实践题目.学有余力的学生可以利用前续课程EDA相关知识在实验室SOPC1C12的平台上实现FIR滤波器的设计.同时,鼓励学生将所设计滤波器应用于程控交换系统中说话人语音的提纯过程.
4结语
数字信号处理是电子信息类专业非常重要的专业课程,本文依据数字信号处理理论与实践并重的特点,将研究性教学方法引入到教学中,并且提出了一些独特的教学方法.这类理论与实践并重、课内与课外结合的方法,符合工科类专业实践性和创新能力培养要求高的特点.在2012—2015年的3个学年,针对电子信息科学与技术和通信工程2个专业开设的数字信号处理课程进行了教学实践,通过学期末教学反馈及毕业设计检验得到了比较满意的教学效果.实践证明,研究性教学方法能充分调动学生的学习积极性,引导学生带着问题学习,提高学生学习效果的同时培养学生创新能力及团队协作精神.同时,通过研究性实验报告及小论文的撰写,为学生后续毕业论文的撰写及研究生学习奠定良好的基础.
作者:任国凤 孙颖 单位:忻州师范学院 太原理工大学
参考文献:
[1]杨智明,彭喜元,俞洋.数字信号处理课程实践型教学方法研究[J].实验室研究与探索,2014,3(9):180-183
[2]毛伊敏,钟文涛.《数字信号处理》课程研究型教学方法研究[J].中国电力教育,2008(11):79-80
[3]肖江,张鸿存,费诺,等.数字信号处理实验系统的结构与应用[J].实验室研究与探索,2001,20(4):36-38
[4]杨文龙.虚拟仪器及其在信号处理教学实验中的应用[J].实验室研究与探索,2007,26(12):297-300
[5]林连冬.数字信号处理研究型实训课程的教学探索与实践[J].实验室研究与探索,2014,33(6):219-222
[6]马永奎,高玉龙,张佳岩,等.“数字信号处理”课程设计导向型教学初探[J].电气电子教学学报,2012,34(4):96-97
[7]FinderS,PetreM.Project-BasedLearningPracticesinComputerScienceEducation[J].FrontiersinEducationConferences,1998,28:1185-1197
[8]FelderD,MansonC.EfficientDual-ToneMulti-frequencyDetectionUsingtheNon-uniformDiscreteFournierTransform[J].IEEESignalProcessingLetters,1998,5(7):160-163
数字信号处理论文范文第6篇
【论文论文关键词】数字信号处理 多媒体教学 实验教学 双语教学
【论文论文摘要】《数字信号处理》是电子信息类专业的一门重要专业基础课。本文通过对多媒体教学、实验教学、双语教学三个方面的教学研究打破了传统的纯理论讲授方式,在保证专业教学质量的前提下提高了学生的实验能力和外语应用能力。
0引言
《数字信号处理》是电子信息类专业的一门重要专业基础课。它是多门课程相互连接的桥梁和纽带,实现了从理论到实践的相互过渡,对于培养学生理论分析和综合应用能力有非常重要的作用。随着电子技术及计算机技术日新月异的飞速发展,数字信一号处理的新理论和新技术层出不穷,它的地位和作用越来越突出。我们的课程教学中仍然普遍采用的满堂灌输的教学理念和方法,与世界一流大学的研究型教学理念和方法之间,存在较大的差距。如何通过教学改革,让它具有高科技数字时代的特色是一个值得探索的课题。
1 多媒体教学
由于《数字信号处理》课程理论比较抽象,概念、公式较多,传统的教学手段和方法是教师在讲台上讲授课程的内容,主要讨论算法和理论的推导;学生在教室里听课和学习,学习活动很大程度上需要依靠检测考试。多媒体教学改进了传统教学模式,以***文并茂、声像具全、化抽象为具体的方式,优化整个教学过程和实践过程。
为了增强教学的互动性,任课教师在课堂上一边使用MATLAB***形演示,一边在黑板上讲解推导相关公式,并鼓励学生把课堂学习的重点放在理解概念和解决问题的思路上。使学生在接受枯燥理论知识的同时,可以看到相应知识点的验证演示,从而使课堂教学更加直观、生动和紧凑。平时以书面形式难以完成的作业,让学生利用MATLAB软件完成,加深对所学知识的理解,提高学习兴趣。
为了保证学时和良好的教学效果,授课要主次分明、详略得当。比如对FFT算法的讲解,由于基2-DIT-FFT与基2-DIF-FFT算法具有对称关系,因此可详细讲解前者的算法,而对照性简要说明后者的算法原理,无需再进行详细的公式推导了;再比如IIR滤波器设计内容,由于巴特沃斯低通滤波器和其它几种滤波器在设计原理方面类似,因此可以巴特沃斯低通滤波器为例,详细推导和讲解设计过程,而对于另外几种滤波器可简要说明,给出结论性的设计过程即可。这样,可节约许多授课学时,同时可达到重点突出、举一反三的效果,有利于学生对内容的掌握和理解。
教师设计的课堂教学型教学内容,一般水平的学生能理解和接受。学生自主学习型教学内容既要反映教学大纲要求,兼顾不同水平和基础的学生学习,学生根据自己学习速度和理解、掌握能力选择学习内容、学习顺序。采用多媒体教学,教师从传统的以讲授变为为学生准备、设计资源和提供个性化的帮助。同时,制定出学习效果、学结、学习反思、网上答疑等评价监督策略,激发学生学习兴趣,实现教学目标。
2实验教学
在以往的教学模式中,实验教学仅要求学生了解所学知识的应用。近年来,国内外先进的信号处理教学模式要求实验教学提升到新的高度,即用实验演示辅助学生理解课程中的重要概念,让学生了解所学知识的应用,在实验中引导学生由被动学习转变为主动学习。为此,教学也需相应的变革:采用基于MATLAB演示、大量增加数字信号处理的应用实例,使实验教学真正成为培养学生实践能力的重要环节。
针对该课程的特点和教学目的,数字信号处理的实验教学内容分为数字信号处理理论基础实验、数字滤波器设计实验和数字信号处理的实现与应用。将教学内容中比较抽象的理论和方法制成模拟软件,比如《数字信号处理》中的时域和频域抽样定理、离散傅立叶变换、频谱分析、快速傅立叶变换、滤波器的设计等内容,学生可以通过网上的虚拟实验室,验证这些信号处理的理论和方法,加深对这些知识的理解和掌握。
实践中要求同学们带预习报告进实验室,并通过抽查提问的方式了解学生预习的程度。采取这样的方法同时也提高了实验设备的利用率和实验的课堂效率。然后将实验成绩的评定拿到实验现场,把实验过程的各个环节纳人考核要素中,采取现场打分的方式,这样,实验成绩就基本上反映了学生实验的真实水平,最大限度地保证了实验成绩的客观公正。
教师在实验前准备充分,精心设计实验内容,采用启发式、讨论式开展实验教学,注重培养学生严谨的科学态度、相互协作的团队精神和勇于开拓的创新意识。通过实践,学生反映良好,既培养学生理论联系实际及数字信号处理的能力,又提高了的实际工作能力和创新能力。
3双语教学
随着信号处理技术的飞速发展,国际上《数字信号处理》课程的教学内容、教学手段和教学方法都发生了巨大变化。国内多数中文教材没有及时反映这些变化。在教学诸多方面与国外教材相比存在较大差距。为了使教学内容与国际先进水平接轨,该课程引进英文原版教材,实行双语教学。
双语教学必须考虑学生的外语水平,采用合适的教学模式。在教材选取上,我们采用一本英文教材、一本电子版的中文教材和一本中文参考书。英文教材为授课内容的主要来源,选用的是清华大学出版社引进的国际知名大学原版教材—AV.奥本海姆(A. V. Oppenheim)等著的《Discrete-Time Signal Processing))。这本书是奥本海姆在数字信号处理方面的的一本力作,其概念清晰、阐述严谨、内容安排合理、例题习题丰富,是一本很好的基础教材。该教材也有相应的中译本,中英文版本二者相辅相成,使学生能够更好地体验其精髓并付诸实践。电子版的中文教材为英文教材的翻译版,选用的是西安交通大学出版社出版的《离散时问信号处理(中文版第2‘版)》。中文参考书在内容上覆盖、超越课程内容,选用的是由清华大学出版社出版的《MATLAB在数字信号处理中的应用》。该书通过工程中的具体实例,将MATLAB的工具应用和数字信号处理的基础知识有机地结合起来,给用户的学习带来了极大的帮助,每章最后给出富有针对性、实用性的练习题,便于用户对知识的学习与掌握。
讲课过程是以英文开场(概括介绍本讲内容),然后对于重要专业词汇进行讲解;主要内容分为若干模块,以中文讲解为主、辅以英文术语,最后用中文进行总结。对中等以下难度的英文题目作业和英文考试题用英语答题,高难度的则用汉语答题。
但教学中一部分学生反映英文原版教材看不懂、生词多、效率低;而有的学生反映本来数字信号处理就难学,用外文教材就更难了。任课教师针对学生的问题认真分析后认为:一是学生缺乏自信心,担心专业课使用英文教材难以理解;二是学生没有恰当的学习方法和技巧。为此,任课教师采取积极措施鼓励学生树立信心,同时在学习方法上加以引导和帮助,并反复强调双语教学是培养学生用英语学习专业知识的有效手段,使学生真正从思想上重视双语教学。通过努力,大多数学生现已接受英文原版教材了。
实践证明,双语教学只有采用合适的教学模式,才能较好的保证学习效果。学生既较好的理解了课程中的专业内容,又提高了英文文献的阅读能力,同时克服了采用英文进行学术交流的恐惧感,逐步提高了英语的应用能力。
4结束语
《数字信号处理》课程教学研究实践表明:本课程打破了传统的纯理论讲授方式,通过仿真技术及多媒体手段,加深了学生对理论知识的理解和实际应用的感性认识,激发了学生的创新思维及强烈的实践欲望。采用先进的实验教学模式,加强对数字信号处理基本概念、基本定义、基本原理的深人理解和建立一个生动形象的感性认识,做到理论与实践密切结合。而不是停留在只会背公式、做习题、考高分的层面上。双语教学使学生的专业英语实际应用能力明显提高;熟悉了专业术语、专业英语口语及书面表达;了解了如何通过多媒体手段进行国际学术交流。《数字信号处理》课程的教学研究是时展的需要,是实施素质教育和创新教育的需要。
转载请注明出处学文网 » 数字信号处理论文范文