信用风险评估篇1
一、小额贷款信用风险的界定及成因
(一)小额贷款信用风险界定
信用风险包括借款人无法偿还债务的违约风险和信用质量下降的迁移风险,是金融机构面临的最主要风险,也是最难以量化的风险类型之一(王力伟,2013)。小额贷款公司风险主要集中于信用风险、自然风险和资金来源风险(孙颖,2008)。同时在贷款业务的单一性、区域有限性和贷款对象特殊性的影响下,其信用风险最为严重(李修平2009)。借款人的违约风险主要来自于两个方面,道德风险和逆向选择(李玉福,付代***,2007)。比如,招商银行信贷产品的标准化导致产品过于清晰,一些中介和担保公司利用这些信息给客户进行包装,客户经理也可能参与作假,增加了道德风险。而随着银行小微信贷的兴起,资质好的客户会选择银行进行小微贷,资质弱的客户只能来小贷公司,导致劣币驱逐良币(唐华,2013)。小额贷款公司虽然发展迅速,但是还不具备足够的风险评估技术和信用风险控制体系从而降低贷前的逆向选择和贷后的道德风险(辛鑫,王文荣2010)。除了债务人本身的信用问题,宏观经济的变动性也是信用风险的产生原因之一(李明,2015)。另外,不可忽视的是,信用风险也包括购买力风险。购买力风险是指未预期的高通货膨胀率所带来的风险(曼昆,2011),当实际通货膨胀率高于借款人预期时,实际还款额就会减少,小贷公司就会蒙受损失。
(二)小额贷款信用风险成因
信用风险防范一直是小贷公司的劣势,尽管在设立时,各试点省明确要求小贷公司建立信用风险控制措施,但是大部分地区并没有明确规定。小贷公司的信用风险成因可以划分为:外部原因和内部原因,个体原因和集体原因。学者们从宏观市场、贷款对象、担保公司和中介公司等主体入手探究外部成因。就宏观市场而言,通货膨胀率高于预期的时候小贷公司蒙受的利率损失就高,信用风险就会增大(曼昆,2011)。就贷款对象而言,小贷公司的信用风险主要是由贷款对象的特殊性所造成的。而作为小贷主要对象的农户和中小企业本身,自我防范风险能力较差,因而风险就转移到了小贷公司(孙思磊,2006)。因此小额贷款业务的违约率与贷款本金、利率、贷款客户的生产收益率以及违约的信用惩罚之间有着密切联系(王廷飞,高新兰,2013)。就担保和中介公司而言,由于存在投机行为和信息不对称,其很可能会通过给贷款人进行信息包装而发生道德风险和逆向选择。内部运营模式、风险控制机制、从业人员素质,贷款业务特征及资金来源的单一性等成为信用风险的主要内部因素。董***(2010)认为内部运营模式导致了小贷公司的信用风险。尽管在设立时,各试点省(区)明确要求小额贷款公司建立一系列信用风险控制措施,比如准备金制度、风险保障基金等,但是大部分地区并没有对此进行明确的规定(李明,2015)。就从业人员的素质而言,金珍珍(2009)认为,人才的缺失,例如:前端客户经理素质不高,风险预警员疏于职守,加剧了小贷公司信用风险的发生概率。贷款业务的单一性和资金来源的受限性导致了借款人一旦违约,贷款就难以及时回收(张小倩,2008)。此外,除了对单个贷款主体违约成因的研究,人们也已经很早就注意到了违约聚集的现象。即违约不是孤立发生的,而是存在一定的聚集现象,表明借款人之间存在一定的违约相关性(王力伟2013)。人们观察到经济上行期违约发生相对较少,经济下行期往往出现违约聚集的现象。例如,宏观经济因素和行业景气度,企业间直接的关系链等都会造成企业违约聚集。
二、小贷信用风险评估指标设计
对于指标的分类,大致有如下2种分类方法:按贷款主体分类为农户、个体工商户和小微企业3类指标,按贷款信息分类为硬信息和软信息2类指标。
(一)贷款主体分类指标
小额贷款的对象是农户、个体工商户及小微企业。因此风险评估指标的样本对象必须是这三者。当前对小贷信用风险的研究,国内实证研究基本上是围绕商业银行农户、小微企业小额贷款、农村信用社及小额贷款公司的贷款样本展开。关于农户指标的选取:马文勤(2010)选取了2009年陕西省杨凌区三家农村信用社农户的15个指标来判断其是否违约,包括户主年龄、户主性别、家庭人口数、家庭劳动力数、耕地面积、农业收入、非农收入、年总支出、信用社入股金额、房屋价值、机械价值、其他资产价值、贷款数额、贷款用途、贷款月利率共15个指标。***维(2008)在前者的基础上增加了文化程度、家庭资产总额、贷款历史、信用账户数目、信用申请情况、司法记录情况和月还款占收入比7个指标。刘畅、方靓、晏江、熊学萍(2009)增加了农户参保情况、村委会评价及是否遭受经济损失3个指标。刘泽双、王光宇、段晓亮(2009)对农户小贷信用风险的指标进行了归类,将其分为表层直接因素、中层直接因素及深层根本因素。孙清、汪祖杰(2006)选取的江苏省北部某农村信用社480个贷款数据中,以财产水平、负债状况、受教育程度、借款用途4个指标作为评估依据。可以看到,对农户指标的选取,家庭成员特征、耕地及其他资产状况、家庭收入状况、家庭信用情况、贷款特征这五项是重要的考量指标。其中,由于农户自身财务数据的缺乏,非财务数据的考量占据了非常重要的地位。个体工商户及小微企业信用风险指标选取:对于小微企业的信用风险的研究,多数学者集中在商业银行小贷部门信用风险的研究及小贷公司信用风险的研究。这里探讨的个体工商户和小微企业是指其财务数据不足以支撑其获得商业银行贷款资格的企业,其财务数据通常具备不完备性、不易获取性。因此,非财务因素的评估十分重要。杨德明(2012)在哈尔滨银行小企业信用等级评定指标中,特别强调了要强化非财务因素的作用,并在申请评分卡的非财务指标中增加了小微企业主这一因素。结合国内各大商业银行操作的实际情况,将企业信用非财务体系归纳为以下五大方面:企业管理环境、企业核心竞争力、行业发展前景、企业经营管理水平(领导者素质、员工素质、组织制度、决策机制、人事管理、财务制度建设)、企业信誉状态。
(二)贷款信息分类指标
贷款信息包括软信息和硬信息。非财务信息也称软信息(softinformation),通常由信贷员提供(李明,2014)。在信息不对称和不完全契约环境下,小贷客户信用风险的评估对关系型借贷特别看重(Bel-louma,Bennaceur&Omri,2005)。Peterson(1999),认为关系型借贷所传递出的信息对小型企业而言更有价值。因为关系型借贷不仅涉及企业财务信息和经营状况,还涉及难以量化、传递的软信息(申韬,2011)。王锁柱,李怀祖(2004)认为硬信息是客观存在的信息的反映,软信息是含有涉及主体的价值观念和知识结构的主观判断的信息,主观判断涉及主体的价值观念和知识结构,是一种区别于是非判别的个人偏好。由于当前小贷公司信贷员具有一定的贷款决策权,因此,在将软信息内容作为评估指标时,很容易产生评估不够客观公正,甚至是道德风险。王延飞、高新兰(2013)提出,要建立以社会资本和道德风险为核心的信用风险评价机制,特别强调对道德风险和社会资本的评价。他们认为,业主社会声誉、生活习性及家庭因素是衡量其道德风险的重要指标,且这些因素是判别其生产经营能否正常运行的关键因素。另外,业主的社交网络、信任合作是衡量其社会资本的重要指标,社会资本越丰富,则其外部约束越大,就能够越多地补偿贷款信用风险。这种评估指标的选取更加符合小额贷款公司的实际情况,指出了小贷公司在信用评估过程中遇到的两个关键问题:社会资本的评估以补偿风险,道德风险的评估以防范风险。但是,道德风险的评估主观随意性较大,难以量化评估;而社会资本的评估过于抽象,也难以量化。基于此,Molodsov提出了软集合理论,该理论在处理不确定性问题的过程中引入近似解代替精确解的概念,有效地克服了传统数学方法的缺陷。申韬(2011)运用软集合理论对5家小额贷款公司进行了信用风险评估,选取了信用履约评价、偿债能力评价、盈利能力评价、经营及发展能力评价、综合评价5个指标作为参数,但由于5家公司评估指标都难以精确量化,该文通过对各评估指标“强”信息取值为1,“弱”信息取值为0,并请专家进行打分来实现风险评估,评估结果较为精确地反映了小额贷款公司的客户信用风险。可见,运用软集合理论可以对企业的财务信息和非财务信息做出一个合理的信用风险评估。
三、小贷信用风险评估模型构建
过去200年间,信用风险评估方法经历着行业变革和技术变革,单纯的主观判断和***策决策逐渐被其他的模型所取代。评估模型的选择取决于所需行业结构水平及大样本可获得性。小贷信用风险评估一般采用的是混合模型和数理模型。对于单纯仅使用专家评分法的情况很少。专家评分法主要表现为国际上通常对于非财务分析遵循的5C原则,即借款人的品格(Char-acte)r,能力(Capacity),资本(Capita)l,担保(Col-latera)l,环境(Condition)(周颖,毛定祥2006)。
(一)信用评分法
信用评分法就是混合模型的表现。Caouette,Altman,Narayanan(1998)指出当贷款对象信用记录不健全、信息获取较为困难时,信用风险评估通常采用综合企业财务因素和企业主个人因素的传统信用评分法。目前,信用评分法已经成为借贷机构是否发放贷款、贷款额度、贷款定价以及提高赢利性的决策支持工具(申韬,2011)。作为客户准入筛选的第一关,哈尔滨银行***研发了小企业信用等级评定模型,对申请贷款的客户进行贷前评级打分。申请评分卡中最重要的四点是:①采用多行业区分,在客户准入上选取融资需求较集中的小企业所在的行业进行研究;②在评分卡中的非财务指标中增加了小微企业主这一因素;③根据第二还款来源对采取抵押担保方式进行贷款的小微企业进行担保评分;④对成长性指标和行业敏感性较高的个性指标等关键性指标调整(杨德明,2012)。这种申请评分法技术是对传统信用评分法的一种突破。它对硬信息的依赖程度大大降低,强化了非财务因素的作用,对于小贷公司信用风险管理有借鉴作用。但也有不足之处:其一,信贷员进行信用评分时难免会出现道德风险。这对小贷公司人员素质提出了高要求,无形中会增加人工成本。其二,贷款客户贷款时经常不具备担保物,不符合申请评分卡里面提供的担保项设置。因此,需要有更加客观和符合小贷公司情况的信用风险防范体系。
(二)基于神经网络模型的信用风险评估模型
人工神经网络(ArtificialNeuralNetwork),是基于对人脑神经网络结构及其功能的模仿而建立起的由大量处理单元相互联结成的智能化信息处理系统。通过这个系统可以实现非线性关系的操作(丛爽1998:1)。韩立群(2000)提出,神经网络具有高度的非线性,良好的容错性和联想记忆功能和较强的自适应性,能够大规模并行处理和分布式存储信息。神经网络由于对数据分布及自变量和因变量的函数关系的精确度要求不高,但其分类精度较高,因此成了信用风险评估领域的一个热点(马文勤,2010)。进入20世纪90年代,银行业引入神经网络将其用于信用风险评估。其风险评估主要是依靠其分类功能实现,即先找出一组对信用分类有影响的因素作为网络输入,再通过有教师或无教师训练建立信用风险评估模型,当输入新样本时该模型即可对其信用风险进行判别分类(沈艳2007)。马文勤(2010)基于BP神经网络建立了农户信用风险评估模型,并与基于Logit方法的农户信用风险评估模型比较得出,BP神经网络农户信用风险评估模型更加精确有效。该文选取了农户样本中的15个指标,将农户贷款行为分为违约类和非违约类,实证结果检验研究所建立的BP网络模型对违约类样本识别的准确率达到90%,因而可以将其作为农村信用社农户信用风险识别工具。吴冲,吕静杰,潘启树,刘云焘(2004)认为,信用风险的实质是信贷资金安全系数的不确定性,但一直以来信用风险评估在小贷公司被看成是对贷款企业进行“违约与否”的风险识别中的“分类”问题。随着信贷决策的日益复杂化,分类评估模式所反映的有限信息已远不能满足信贷风险决策的需要。基于此,这几位学者提出了建立基于模糊神经网络的小贷信用风险评估模型。该模型引入了贷款方式这一分类评估指标,这是对传统模型不区分贷款方式就进行信用风险的评估的一种改进。小贷公司贷款方式有:信用贷款、保证贷款、质押贷款、抵押贷款。同一企业在不同贷款方式下其信用风险是不同的,信用风险的评估结果应是某一特定贷款方式的量化值。该模型通过选取同一行业的短期贷款的样本数据进行实证研究,有效避免了由于不同行业带来的数据不可比问题。模型通过对营运能力因子、偿债能力因子、盈利能力因子和贷款方式因子训练发现,训练结果满意,可见模糊神经网络方法用于评估商业银行小额贷款信用风险非常适合。我们可以看到,模糊神经网络法是对专家评估法和信用评分法的一种改进,由于对数据的精确性要求不高,是分析小贷信用风险的非常好的一种方法。但同时我们也可以看到,其指标数据的选择大部分是财务数据,这对贷款客户财务信息的完备性提出了高要求。因此,如果将样本数据换成是软信息,再运用模糊神经网络模型进行分析,可能更适合于小贷公司信用风险的评估。
(三)基于模糊集合理论的信用风险评估模型
模糊集合理论(fuzzysets)于1965年由L.A.Zadeh教授提出,用以表达和解决模糊难以量化的问题。模糊综合评价法是基于模糊数学,将定性评价指标转化为定量评价指标的一种评估方法。一般评价步骤为,首先构建模糊综合评价的指标,确定被评价对象的因素集和评价集之间的函数关系,再确定各因素的权重以构建评价矩阵,最后将矩阵与因素的权重合成(模糊运算及归一化)得到模糊综合评价结果。它具有结果清晰,系统性强的特点,能较好地解决难以量化的问题,适合各种非确定性问题的解决。吕婷婷(2012)构建了基于模糊综合评价法的小额贷款公司风险评价模型。文章选取不良贷款率、贷款风险回报率、拨备充足率、正常关注类贷款迁徙率、贷款集中度、环保合格企业贷款余额占比作为信用风险的影响指标,实证结果得出拨备充足率对信用风险的影响权重最大,环保合格企业贷款余额占比对信用风险的影响最小。类似的能够解决模糊难以量化的问题的方法还有模糊层次分析法(FAHP)。模糊层次分析法(fuzzyanalytichierarchyprocess,FAHP)。模糊层次分析法是将模糊法和层次分析法(AHP)的优势结合而成的多准则决策方法。模糊层次分析方法能够准确地描述任意两个因素之间关于某准则的相对重要程度,能够很好地解决定性分析的抽象问题,得出的识别结果能较好地反映小额贷款公司的现实情况。李明(2014)运用模糊层次分析法(FAHP)进行风险识别,计算得出客户管理层特征维度、客户经营与决策能力维度、小额贷款公司关系能力维度、客户发展前景维度、客户偿债能力维度、客户贷款特征维度六个层面以及每个层面各个评估指标的模糊权重值,建立了小额贷款公司风险评价指标体系。该文从实际出发,根据专家意见,运用模糊层次分析法(FAHP)构建模糊互补判断矩阵,通过推导计算出矩阵指标层相对于目标层的权重,再通过对矩阵进行一致性检验表明其权向量结果的可靠性,最后得出风险识别结论,对小贷公司风险评估具有一定的指导意义。但是,由于不同的专家对小额贷款公司风险认识不同,在构建函数时具有很大的主观性,因此识别结果与现实有一定的差距。因此,为了得到理想的识别效果,专家根据不同的小贷公司的特点和环境来确定识别指标及权重至关重要。
(四)基于CreditMetrics的信用风险评估模型
CreditMetric模型是于1997年推出的用于量化信用风险的一种信用计量模型,通过计量风险价值来分析信用风险(宋志涛,2008)。CreditMetric模型中唯一的变量就是信用,模型认为违约是指借款人的信用等级下降,不管信用等级下降多少,都会给贷款人造成损失。模型最大的优势在于其对信用风险价值的估算,通过风险量化可以很直观地看到风险的变化。赵静(2012)选取了云南省农业银行某支行2010年以前的农户个人贷款为研究对象,构建了基于CreditMetrics信用计量模型的农户贷款风险预估体系,实证研究结果表明该银行目前VAR值较为合理,处于风险可接受状态。此模型首次提出了“边际风险贡献”的概念,将“债务人信用等级的变化”作为“违约”的一个考量因素,这不仅考虑到了违约风险,还将差额风险纳入其中,比较贴合实际。不过,该模型的分析需要大量的数据库做支撑,而目前由于我国的信用市场环境以及部分数据难以取得(如信用转移矩阵),CreditMetric模型在我国的运用受限,不过其对资产组合分析评价的方法和思想值得借鉴。
四、研究不足与展望
目前,国内对小额贷款公司风险管理的系统性理论研究和实证研究具有一定的局限性。从金融市场的发展趋势看,本领域具有更为广阔的研究空间。
(一)风险评估方法的局限性及数据库建立
当前信用风险指标的选取基本上是先通过专家分析法等主观地选取指标,相当于首先建立一个合理的假说,再通过层次分析法或其他方法对指标分配权重进一步筛选。这种指标选取的方法不可避免地带有主观性,如果没有建立在一个合理的假说之上的话,就会得出错误的结论。因此,建议建立一个更强大的小额贷款信用风险指标研究基础。目前的指标选取主要是以企业的方便样本为基础的,有些信息甚至是难以量化的,比如王延飞、高新兰(2013)提到的客户的社会资本和道德风险。在大数据时代背景下,这些软信息多半属于非结构化或半结构化信息(如***像、文本)。通过不断挖掘数据,运用数据处理工具———统计、决策树、神经元、模糊逻辑、数学规划等,可以辅助我们更好地应用大数据进行决策。展望未来,建议通过完善相关法律法规***策,在小额贷款全行业内建立一个统一规范的小额贷款信用风险指标数据库,使每个客户的信用数据都记录其中,依托该数据库来建立各个小贷公司的信用风险评价体系。小贷公司再将信用评估体系评估得出的信用数据反馈录入到信用数据库,实现数据的高效共享。这样的规范不仅有助于小贷公司做出客户放贷的决策,以避免因主观选取指标带来的不同企业评估的差异性,同样也是客户以后在各个金融机构借贷的信用通行证。
(二)研究数据的不充分性及信用知识管理
由于小额信贷对象信用数据难以取得且不够完善,有些基于软信息的指标在定量化的过程中会出现研究定量依据不同的情况,而且,目前信用风险软信息指标本身是观察性数据,存在着很多偏倚,例如选择偏倚、混杂变量和缺乏普遍性(Lifeomics,2014)。每个信用风险评估模型都有其优劣性,即便证实了一个风险指标和客户信用风险存在强有力的关联,我们仍然需要寻找一些证据来证明它在信用风险相关领域中具有实用性(即评估其客户信息与信用风险之间的平衡)。因此如何取得和规范指标内容以及增强指标间的真实关联性的问题亟待解决。建议通过更为深入、广泛的实地调研,多渠道(银行、农信社、证券公司、其他小贷公司、客户所在公司或家庭状况等)直接或间接地搜集客户信用指标,在样本容量充足的前提条件下,结合贷款客户的特点,提炼出更加完善、标准化的客户数据,以期进一步补充、提炼小额贷款公司信用风险评估指标,形成更具科学合理性、简约性、有效性和广泛适用性的小额贷款公司信用风险评估指标体系。此外,要证明样本数据的有效性和实用性,就需要对统计数据进行显著性检验,以区分真实关联还是虚假关联;就需要科学地选取计量模型,充分了解各模型的缺陷,防止检验失效。在进行数据搜集和提炼的过程中,同时要注意成本-效益问题。信用风险管理领域的各项研究是一个重复性较高的过程,需综合考虑成本-效益问题。机器学习算法(machinelearningalgorithm)将有助于知识内容管理(Lifeomics,2014)。建议通过开展知识管理,加强知识共享、知识转移和知识创新,建立公开透明的贷款客户信用档案制度,以降低信用风险的搜索成本。
(三)研究对象的不可比性及信用指标选取
由于农户和小微企业,其信用等级不同,因此不同贷款对象的信用风险评级结果会存在不可比性。建议根据贷款客户的特点,建立具有差异化的客户信用评级体系,以消除不同客户类型带来的数据不可比问题。由于不同行业贷款客户信用信息存在差异,建议通过选取同一行业的贷款样本数据进行实证研究,以避免由于不同行业带来的数据不可比问题。
信用风险评估篇2
摘要:自适应共振模型是为了能够分类任意次序模拟输入模式而设计的,它可以按任意精度对输入的模拟观察矢量进行分类,较好地解决了前稳定性和灵活性问题,同时能够避免对网络先前所学的学习模式修改。本文将ART2模型应用于信用风险评估,通过实证比较研究,结果显示应用自适应共振模型进行信用风险评估在精度和准确性上,都优于其他神经网络模型和统计方法。
1统计方法用于信用风险分类评估存在的局限性
对信用风险评估一类主流方法是基于分类的方法,即把信用风险分析看成是模式识别中的一类分类问题—将企业划分为能够按期还本付息和违约两类。其具体做法是根据历史上每个类别(如期还本付息、违约)的若干样本,从已知的数据中发现其规律,从而总结出分类的规则,建立判别模型,用于对新样本的判别,这样信用评估就转化为统计中的分类问题。传统的统计模型主要基于多元统计分析方法,根据判别函数的形式和样本分布的假定不同,主要的模型有:多元回归分析模型、多元判别分析模型(MDA)、Logit分析模型、近邻法等。其中以多元判别分析模型和Logit分析模型应用最为广泛,已有大量商业化软件。
尽管这些方法在国外有大量应用,但是大量实证研究(Altman,1983;Tam & Kiang,1992;Altman,et al,1994)结果发现:(1)企业财务状况的评价可以看作是一类基于一系列***变量基础上的分类问题;(2)企业财务状况好坏与
财务比率的关系常常是非线性的;(3)预测变量(财务比率)可能是高度相关的;(4)大量实证结果表明,许多指标不成正态分布。而统计的方法却不能很好地解决以上问题。由此可见统计模型的最大优点在于其具有明显的解释性,存在的缺陷是过于严格的前提条件。如多元判别分析模型(MDA),它要求数据服从多元正态分布、等协方差、已知先验概率和误判代价等要求,而现实中大量数据严重违背了这些假定(Eisenbeis,1997)。引入对数变化可在一定程度上改进数据的非正态分布,但一方面变换后的变量可能失去经济解释含义,另一方面仍没有满足等协方差的要求;应用二次差别分析(QDA)虽可解决等协方差问题,但一方面没有满足正态性假设,另一方面当数据样本小、维数高(指标多)时二次差别分析的性能明显下降,而样本少、维数高正是我国信用数据的显著特点。实证结果还表明二次差别分析对训练样本效果较好,而对测试样本并不理想。除此以外,多元判别分析模型适用于成熟行业的大中型企业,因为这些企业具有较强的稳定性和规范性,其发展有一定的规律可循,参数统计方法易于给出较准确的结果及合理的解释。然而这类方法是静态的,需要根据地区、行业经济情况的变化不断地调整参数,甚至进行变量的调整。
为了解决这些问题,引入了Logit分析模型和近邻法。Logit分析模型不需要假定任何概率分布,也不要求等协方差,但是当样本点存在完全分离时,模型参数的最大似然估计可能不存在,模型的有效性值得怀疑,另外该方法对中心区域的差别敏感性较强,导致判别结构的不稳定。近邻法不要求数据正态分布,但当数据的维数较高时,存在所谓的“维数祸根(Curse of dimensionality)”——对高维数据,即使样本量很大,其撒在高维空间中仍显得非常稀疏,绝大多数点附近根本没有样本点,这就使得“利用空间中每一附近的样本点来构造估计”的近邻法很难使用[4]。
2应用神经网络进行信用风险评估的意义
商业银行信用风险评估是复杂的过程,除了对企业的财务状况的各种特征的评估外,还须对企业的非财务状况进行评估,而且又涉及宏观经济环境和产业结构、产业周期的影响;除了客观的评估外,还依赖于专业人员依据经验进行主观评估。神经网络是一种具有模式识别能力,自组织,自适应,自学习特点的计算机制,它的知识编码于整个权值网络,呈分布式存储且具有一定容错能力。神经网络对数据的分布要求不严格,也不必要详细表述自变量与因变量之间的函数关系,神经网络的这些特征使之成为信用风险分析方法的一个热点。
建立商业银行信用风险评估模型必须依赖于一组已知的函数集合。要求这种函数集合在任意精度上可以逼近实际系统,从数学上讲,这就要求这个集合在连续函数空间上是致密的。目前已经从理论上严格证明了只用一个隐藏层的神经网络就可以唯一地逼进任何一个连续函数。多层神经网络为系统的辨识和建模,尤其是非线性动态映射系统提供了一条十分有效的途径。非线性动态映射系统的神经网络建模被认为是应用神经网络的最成功的范例。
影响商业银行信用风险评估的机理很复杂,无法建立精确的非线性动态模型,而人工神经网络擅长处理非线性的、关系不确定的十分复杂以至于数学模型难以描述的问题。对于分析时间序列数据,由于人工神经网络能识别和模拟数据间的非线性关系,不需要正态分布和先验概率等条件的约束,能针对新增样本灵活的训练再学习,因此优于其他统计方法,同时由于网络本身具有自学习的功能,预测结果相对精度较高而且稳定性好,因此应用神经网络可以通过对网络的训练,掌握借款人的财务特征的非线性函数关系。神经网络是由许多神经元构成的,它对系统特性的记忆表现为各个神经元之间的连接权值,单个神经元在整个系统中起不到决定性作用,一个经过训练的神经网络可以按相似的输入模式产生相似的输出模式,当商业银行信用风险评估系统因某些非财务风险因素和判断误差过大的财务风险因素造成输入模式变形时,网络仍可以保证稳定的输出。
神经网络可以逼进任意复杂的非线性系统,神经网络的转换函数能够非线性地响应冲击,例如,像覆盖比率这样的财务比率超过最低水平(如AAA级)时,超过这个阀值的增加值不会对信用质量有什么影响。线性回归不能以这样的方式限制响应程度,神经网络的转换函数却能实现。神经网络以并行的方式处理信息,具有很强的信息综合能力,因此神经网络理论在商业银行信用风险分析和实施对信用风险的主动控制中将会发挥更大的作用。
由神经网络构成的非线性模型具有较强的环境适应能力。在根据多个训练样本企业的财务特征建立神经网络非线性系统后,如果企业类型、财务特征和非财务特征发生变化,神经网络可以通过学习,建立企业信用的非线性函数关系,并且不需要改变网络的结构和算法。
综上所述,对于那些无法建立精确的动态判别函数模型的非线性商业银行信用风险评估,可以将神经网络理论应用于风险评估当中,撇开企业财务因素、非财务因素和企业信用状况复杂的非线性机理,建立起非线性风险映射近似的动态模型,使这个模型尽可能精确地反映风险映射关系非线性动态特征。通过该系统我们能够计算对各种输入的响应,预估商业银行信用风险状况及其发展趋势,进而能够使用各种信用工具对风险进行主动控制,促进商业银行的智能化风险管理系统的建设和发展完善。
3基于自适应共振理论的信用风险评估模型
一个公司财务状况的好坏往往是企业自身、投资者和债权人关注的焦点。因为一个营运良好、财务健康的公司可提高自身在市场上的信誉及扩展筹资渠道,以使投资者信心倍增。相反,一个陷入财务困境和濒临破产的企业不仅乏力吸引投资,还让原有投资者面临巨大的信用风险。
由上文的分析中我们知道,对企业财务指标的分析,传统的分类方法尽管有它的优点但本身也存在一些局限性。作为研究复杂系统的有力工具,神经网络能处理任意类型数据,这是许多传统方法无法比拟的。通过不断学习,能够从未知模式的大量复杂数据中发现其规律。神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,毋需分清存在何种非线性关系,给建模与分析带来极大的方便。该方法用于企业财务状况研究时,一方面利用其映射能力,另一方面利用其泛化能力,即在经过一定数量的带有噪声的样本训练之后,网络可以抽取样本所隐含的特征关系,并对新情况下的数据进行内插和外推以推断其属性。
目前我国银行机构主要使用计算贷款风险度的方法进行信用风险评估——在对企业进行信用等级评定的基础上,考虑贷款方式、期限以及形式因素,进而确定贷款的风险度。其中作为核心的信用等级评定,是通过对企业的某些单一财务指标进行评价,而后加权平均确定的。该方法的最大缺陷在于指标和权重的确定带有很大的主观性,使得评级结果与企业的实际信用状况有很大出入,因此需要引入科学方法来确定有效指标,并建立准确的定量模型来解决信用评估问题。
针对这种形势,根据我国商业银行的具体情况,结合国际上目前较为流行人工神经网络技术,本文设计了一种基于自适应共振理论的信用风险评估方法。
3.1自适应共振理论(ART)介绍
自适应共振理论(Adaptive Resonance Theory)简称ART,是于1976年由美国Boston大学S. Grossberg提出来的。他多年来一直潜心于研究用数学来描述人的心理和认知活动,试***为人类的心理和认知活动建立统一的数学理论,ART就是这一理论核心部分,又经过了多年的研究和不断发展,至今已经提出了ART1、ART2和ART3共三种结构。ART网络作为模式分类器较好地解决了前面提到的稳定性和灵活性问题。使用ART网络及算法具有较大的灵活性以适应新输入的模式,同时能够避免对网络先前所学的学习模式修改。ART是一种能自组织的产生对环境认识编码的神经网络理论模型,由于横向抑制是自组织网络的特性,ART采用了MAXNET子网结构,该网络采用横向抑制方法增强并能选择具有最大值输出的一个节点。
ART模型的算法过程如下:
第一, 将一个新样本X置入节点;
第二,采用自下而上的过程,求得: ;
第三,运用MAXNET网络,找到具有最大输出值的节点;
第四, 通过自上而下的检验,判断X是否属于第j类,即如果有 ,则X属于第j类, 是警戒参数。如果上式不成立,转到第六步,否则继续。
第五, 对于特定的j和所有的i更新 和 ,设t+1时刻 , , , 。
第六, 无法判断X是否属于第j类,抑制该节点返回到第二步,执行另一个聚类的处理过程。
本文所使用的神经网络模型就是ART2神经网络模型。ART2神经网络是为了能够分类任意次序模拟输入模式而设计的。它可以按任意精度对输入的模拟观察矢量进行分类。
3.2应用ART2神经网络进行信用风险评估的可行性分析
通过上文对ART2神经网络的介绍,笔者认为将ART2神经网络应用于信用风险评估具有统计方法和其他神经网络算法无法比拟的优势。首先,ART2神经网络较好地解决了稳定性和灵活性问题,它可以在接受新模式的同时对旧模式也同样保持记忆,而其它类型神经网络所记忆的样本个数有限,由此可见,ART2神经网络随着输入样本数的增加,它作为模式分类器分类的精度也越高,所覆盖的样本空间也越大。其次,ART2神经网络是边学习边运行的无监督学习,所以它不存在像BP算法那样需要进行几小时甚至更长时间的训练过程,也就是说ART2网络具有较高的运行效率和较快的学习速率,这一点对于解决像信用风险评估这样的复杂问题来说是相当具有优势的。再次,ART2神经网络与人脑的某些功能类似,能够完成识别、补充和撤销的任务。这三种功能在英文中称为Recognition,Reinforcement和Recall,可简称为3R功能。识别功能在上文已经介绍过,下面对补充、撤销功能做些简单介绍。补充功能包含有以下几方面的内容:(1)每当ART2系统对输入矢量的类别作一次判决即是给出矢量所属类别的输出端编号,根据此判决,系统可以采取一种“行动”或者作出某种“响应”。这和人总是根据对外界情况的判断来决定自己的行动相似。(2)人在识别时对于所有被识别的类并不是一视同仁的,识别过程受到由上向下预期模式的很强制约。这样就会使得人们在某些情况下只关心几种类别,而对其他类别则“不闻不见”,这种集中注意力的本领可以使人们在混乱的背景中发现目标。在客体发生某种变形或缺损或者有强噪声情况仍能对其正确分类。我国商业银行进行信用风险分析的起步较晚,有关的信息往往残缺不全,ART2网络的这种在混乱中集中注意力发现目标的功能更适合我国的现实数据情况。撤消功能的作用与补充功能相反,这是指某些不同的观察矢量在初步分类时被划分成不同的类别,但是通过系统(主体)与客体相互作用的结果,又应判定它们属于同一类。由此可见基于ART2网络的这些功能,应用ART2神经网络进行信用风险评估相当于人类专家进行信用风险评估的建模过程,而且ART2神经网络与人类专家相比进行的评估更客观、更有效、更精确。最后,ART2神经网络可通过调整警戒线参数 (门限值)来调整模式的类数, 小,模式的类别少(对分类要求粗), 大,模式的类别多(对分类的要求精细),这一点是其他方法无法比拟的,我们可以通过调整 值对输入网络的财务数据进行传统的两级分类(即违约、非违约两类),也可以通过提高 值对输入网络的财务数据进行国际通用的五级分类(即正常、关注、次级、可疑,损失五类)。Altman、Marco和Varetto与意大利银行联合会合作在其经济和金融信息系统中首次进行了将神经网络应用于企业的经济和金融问题诊断的试验,试验的研究结果表明,将企业的财务状况分为正常、关注和次级三类比分为正常和问题两类困难得多,而ART2神经网络却可以通过 值的调整灵活地实现该功能。
综上所述,笔者选择算法复杂的ART2神经网络进行信用风险评估。并且设计了一个自适应共振网络,对信用风险分析进行了实证研究。
3.3基于ART2模型的信用风险分析的实证研究
下面以某国有商业银行提供的90多家企业客户为对象,应用自适应共振理论对这些企业客户的财务数据进行信用风险评估。对于输入到神经网络的财务比率的选择,参照国内***考核企业财务状况及国外用于信用风险评估所使用的一些经典财务比率指标,一共挑选出包括企业盈利能力、企业营运效率、企业偿债能力及企业现金流量状况等二十余个指标,考虑到指标间的相关性,利用SAS统计分析软件进行回归分析,得出以下几个比率:
经营现金流量/资产总额(流动性)
保留盈余/资产总额 (增长性)
息税前利润/资产总额 (赢利性)
资产总额/ 总负债 (偿债性)
销售收入/资产总额 (速动性)
某国有商业银行提供的样本数据有90多家企业的财务数据,数据质量不高,有些企业财务数据缺失严重,经过对样本数据的初步审查,删除了不合格的样本40多个,最终得到有效的样本为55个,其中能够偿还贷款的企业34个,不能偿还贷款的企业21个。
评估的准确程度用两类错误来度量,在统计学中,第一类错误称为“拒真”,第二类错误称为“纳伪”。在信用风险评估中把第一类错误定义为把不能偿还贷款的企业误判为能偿还贷款的企业的错误,第二类错误定义为把能够偿还贷款的企业误判为不能偿还贷款的企业的错误。显然,第一类错误比第二类错误严重得多,犯第二类错误至多是损失一笔利息收入,而犯第一类错误则会造成贷款不能收回,形成呆帐。
在应用自适应共振模型进行信用风险评估的同时,笔者也使用了统计方法和经典的BP神经网络模型对同样的样本数据进行了信用风险评估,以便比较验证自适应共振模型的评估准确性。
统计方法使用的是可变类平均法,可变类平均法是由Lance和 Williams(1967)发展的,计算距离的组合公式为:
Djm=(Djk+DjL)(1-b)/2+DkLb (1)
参数b介于0到-1之间,DkL——是类Ck与CL之间的距离或非相似测度。笔者使用SAS统计软件中提供的可变类平均法对样本数据进行了聚类分析。
BP神经网络的结构包括输入层5个节点,用来输入5个财务指标比率,输出层1个节点(取值为1表示能偿还贷款,取值为0表示不能偿还贷款),另外还有一个隐层,隐层包括5个隐节点。网络的有效性采用K组交叉检验的方法进行验证,也就是将样本分为K组,其中K-1组为训练数据,第K组为检验数据,这里将样本数据分为两组,第一组用于训练网络,包括11个违约的企业和16个非违约的企业,第二组作为检验数据,包括10个违约企业,18个非违约企业。该方法使用MATLAB语言编程实现。
ART2模型包括输入层为5个节点,用来输入5个财务指标比率,输出层3个节点,分别表示信用风险的三个级别(正常,关注,可疑),这里应用ART2模型将信用风险分为三个级别有如下几个原因:(1)将信用风险分为三个级别,比前面使用统计方法和BP模型方法将信用风险简单分成两类(违约、非违约)更容易把握风险的程度,更接近实际信用风险评估的需要,也更贴近于国际通用的五级分类标准。(2)通过ART2网络门限值参数的调整可以将信用风险分为国际通用的五级分类标准,这也正是ART2模型的优势所在,但是ART2网络是信用风险分析混合专家系统的组成部分,它的评估结果要作为输入,输入到专家系统中,以便信用风险评估专家系统进行定性及定量的综合评估,考虑到专家系统的规则的数量和知识库的规模对系统执行效率的影响,因此这里将信用风险分为三类。有关专家系统的详细说明,将在下一节讨论。下面给出ART2模型网络的参数设置:a=10,b=10,c=0.1,d=0.9, =0.2, 。由于ART2模型是无教师指导的网络,因此不用训练,直接输入数据,网络自动进行信用风险评估。其中评估的结果:正常、关注两类属于非违约企业,可疑为违约企业。该方法使用C语言编程实现。
下面给出三种方法的最后评估结果见表1
表1 训练样本和测试样本的误判
训练样本 测试样本
第一类错误 第二类错误 总误判 第一类错误 第二类错误 总误判
统计模型 8(38.01%) 9(26.5%) 17(30.9%)
BP模型 2(18.1%) 1(6.1%) 3(11.1%) 3(30.0%) 4(22.2%) 7(25.0%)
ART2模型 4(19.1%) 5(14.7%) 9(16.3%)
通过表1的比较结果可以看出对于统计方法和BP模型自适应共振模型的误判率是最低的,说明了该方法的有效性和可靠性。
另外需要说明的一点是,这里所使用的企业样本数据偏少,而且噪声过多,数据的质量不是很好,这样的数据作为初始数据输入网络对网络的评估的准确性有一定的影响,虽然ART2这种集中注意力可以在混乱的背景中发现目标的特性使得它的评估的准确性比其它两种方法要高,但是笔者相信如果初始输入网络的数据质量再提高一些,网络的误判率会更低。
参考文献:
[1] 张维,李玉霜,商业银行信用风险分析综述,《管理科学学报》[J],1998年第3期,20-27。
[2] 朱明,杨保安,基于知识的银行贷款分类系统,CJCAI2001[C],231-235。
[3] 黄娟,冯玉强,王洪伟,基于联接归纳推理的信贷风险评估集成智能系统,《计算机应用研究》[J],1999年第9期,74-16。
[4] 王春峰,万海晖,张维,商业银行信用风险评估及其实证研究,《管理科学学报》[J],1998年第1期,68-72。
[5](美)约翰.B.考埃特,爱德华.I.爱特曼,保罗.纳拉亚南著,石晓***等译,《演进着的信用风险管理》[M],机械工业出版社,2001。
[6] 李志辉,《现代信用风险量化度量和管理研究》[M],中国金融出版社,2001年。
[7] R.R.Trippi and E.Turban, Neural networks in finance and investing[M], chicago: Irwin professional publishing,1996。
[8] Dick San-Cheong cheung, Kwok-Wa Lam and Sheung-Lun Hung, neural networks for credit scoring model, intrlligent data engineering and learning perspectives on financial engineering and data mining[M], published by Springer,1998,55-62。
[9] Christine Guilfoyle and Judith Jeffcoate, Expert Systems in Banking and Securities[M], published by Ovum Ltd 7Rathbone Street London W1p 1AF England,1990,81-88。
信用风险评估篇3
[关键词]大数据;个人信用风险评估;随机森林
一、引言
央行征信系统是目前世界规模最大、收录人数最多、收集信息全面、覆盖范围和使用广泛的信用信息基础数据库,其存在一些结构性的缺陷,直接影响了互联网金融和其他小型金融机构对客户综合信用评估的准确率。例如,虽然央行征信系统已经收集了8.68亿个自然人的信息,但是有信贷记录的人数仅有3亿多人,大量个人在征信系统中没有任何信贷信息;还有近6亿自然人信息没有被央行征信系统收集;央行征信系统信贷记录主要来源于商业银行等金融机构,其数据在时效性、全面性和层次性上存在短板,无法全面反映客户的真实信息;此外,民间借贷信息也不会接入央行征信系统。大数据是目前互联网领域的研究热点之一,为解决央行征信数据缺失情况下准确评估用户信用风险提供了一个方法。利用先进的机器学习理论建立基于大数据的信用评估模型,对用户在网购、交易、社交等平台积累的商誉和行为数据进行整合和分析,从而将商誉信息转化为信贷评级依据,解决交易过程中的信息不对称的问题,既可以对互联网金融、小额贷款公司等金融机构提供一个有力的风险抓手,也可以对在央行征信系统信贷数据缺失或者信用记录不好、资质比较差的客户提供一个获取信用类服务的机会。因此,深度挖掘互联网大数据信息,开发基于大数据的信用风险评估模型,具有十分重要的现理论和意义。
二、国内外典型个人信用评分系统
(一)FICO系统
FICO是FairIsaac公司推出的一套评分系统,在美国得到广泛使用,其实质是应用数学模型对客户信用信息进行量化分析,基本思想是把数据库中全体借款人的信用习惯与具体某个借款人过去的信用历史资料进行对比,分析该借款人未来发展趋势是否与数据库中那些已经陷入财务困境的借款人有共同的趋势,从而决定是否放款给借款人。其判断的指标主要是客户在金融信贷方面的信息,主要包括信贷组合(10%)、争取新信贷(10%)、信贷时长(15%),未偿债务(30%)、付款历史(35%)。FICO采用的数学模型是传统的logistic回归模型,其信息维度过于单一。
(二)ZestFinance
ZestFinance是一家基于大数据的信用风险评估公司,其信用理念是认为一切数据都与信用有关,从多种渠道获取用户数据,充分挖掘用户信用信息[1]。与传统征信体系不同,其数据来源主要包括第三方数据、网络数据、用户社交数据等多个维度,能够在大数据基础上,从多种角度对借款人进行量化信用评估。ZestFinance的信用评估模型基于先进机器学习和集成学习模型,但具体的预测模型细节是其核心机密,其信用评估模型中用到几千个数据项。(三)芝麻评分芝麻评分是蚂蚁金服旗下个人征信机构在国内率先推出的个人信用评分。芝麻信用通过网络数据的收集和评估对不同的个体给出相应的评分,主要考虑个人信用历史、行为偏好、履约能力、身份特征和人脉关系等维度,数据来源于阿里巴巴生态系统数据、***府公共部门数据以及合作机构数据等。评分模型以线性回归和逻辑回归为主,部分模型也涉及决策树、神经网络等现金机器学习技术。
三、构建用户画像
如何有效地收集、组织用户信息,挖掘与业务应用相关属性,是基于大数据的业务分析和建模之前需要重点解决的问题。“用户画像”是指企业通过收集与分析消费者相关的各种大数据信息,完美地抽象出一个用户的商业信息全貌,并针对特定业务场景进行用户特征不同维度的重新组合,精准刻画用户的商业特征[2]。用户画像可以用标签的集合来表述,一个标签可以看作是高度精炼的特征标识,如年龄段标签:25~35岁;地域标签:上海等。对互联网上用户相对稳定的静态信息数据,如性别、年龄、地域、职业、婚姻状况等,直接建立标签;对用户不断变化的行为等动态信息数据,采用事件模型构建标签及对应权重,一个典型事件模型包括时间、地点、人物三个要素,即什么用户、在什么时间、什么地点做了什么事。此外,标签的权重还应当考虑时效因素。
四、大数据预处理
在利用大数据进行个人信用风险评估建模之前,必须对大数据进行预处理,使其满足建模要求,主要包括以下一些处理环节。1.数据收集按照原始数据库和建模数据库分别收集数据,必要时采取补录数据的方式完善建模数据库。2.数据核对需要从表1所示的几个方面进行数据核对。3.数据清洗经过数据核对发现的数据问题,将通过数据清洗处理步骤进行处理。对于有问题的数据,尽量通过调整后使用,经过调整后仍然无法使用的数据,对其进行删除处理。4.单变量分析目的是确保变量满足符合实际业务意义,对分析对象具有高区分能力。(1)变量区分能力分析。往往使用多个统计指标进行计算,例如AR,K-S,等,然后综合各个统计指标的计算结果对于变量进行选择;(2)经济学含义分析。变量应当反映实际业务需要,具有明确的经济学含义;(3)变量转换。变量可能有很多类型,各个变量取值范围也可能有所不同,常用转换方法是将变量转换为概率值。5.多变量分析目的是降低变量间相关性,使模型具有稳定的高区分能力,包含尽可能多的不同信息类型。(1)变量相关性。常用方法有相关性矩阵,聚类分析或者使用容忍度、VIF指标等;(2)区分能力。对于多个变量的组合,除了分析其区分能力的高低之外,区分能力的稳定性也是一个重要的因素。(3)信息类型。模型所选变量对于可能信息类型要尽量涵盖全面,保证模型能够对于分析对象信用状况进行全面的评估。6.变量衍生互联网数据稀疏性强、原始变量业务解释性较弱,因此在模型分析前需生成更加稠密、业务解释性更强的衍生变量。衍生变量主要侧重于商品消费信息。
五、风险计量模型
传统信用风险评估模型在业务逻辑架构下分析变量的基本属性及风险区分能力,用逻辑回归等统计分析模型进行量化分析,得到精确的风险计量结果,然而用户行为数据独有的稀疏性会使得统计模型极不稳定。决策树对局部数据分析有着极强的稳定性和鲁棒性,同时可以揭示变量风险区分能力的非线性结构关系。因此可以将决策树模型和逻辑回归模型进行结合,即在进行统计建模前添加一层决策树模型进行单变量分析,同时利用CHAID决策树生成二元决策树变量,然后将决策树模型的输出结果(单变量、交叉变量及二元决策树变量)一同导入逻辑回归模型中进行统计建模,确定所有风险因子的风险权重。
(一)决策树模型
在决策树各种算法中,CHAID(Chi-SquaredAutomaticInteractionDetection)[3]既适用于二值型变量,也适用于连续型变量。针对每一次分叉,CHAID产生一系列二维,然后分别计算所生成二维表的卡方统计量或F检验。如果几个备选变量分类均显著,则比较P值大小,然后根据P值大小选择最显著的分类变量以及划分作为子节点。
(二)随机森林模型
随机森林(RandomForest)[4]是由美国科学家LeoBreiman2001年发表的一种机器学习算法,包含多个由Bagging集成学习技术训练得到的决策树,最终的分类结果由单个决策树的输出结果投票决定。随机森林克服了决策树过拟合问题,对噪声和异常值有较好的容忍性,对高维数据分类问题具有良好的可扩展性和并行性。
(三)逻辑回归模型
逻辑回归模型是因变量服从二项分布,且自变量的线性预测与因变量的logit变换相连接的一种广义线性模型。如果样本分布服从多元正态分布,那么该样本正好符合对数回归的假设,对数模型的误差项服从二项分布,在拟合时采用最大似然估计法进行参数估计。
六、系统开发关键步骤
根据前述风险计量模型,大数据环境下建立个人信用风险评估系统的关键步骤如下:不难看出,通过上述方法建立的系统具有以下优点:(1)以传统模型为基础搭建,保留传统模型的业务解释性和稳定性;(2)以随机森林模型为基本架构搭建了随机模型,克服了传统模型对数据噪声亦比较敏感的缺陷,使该系统的泛化性与稳定性有了进一步的提高;(3)克服了传统模型一般只能容纳10-15个变量的缺陷,该系统可以涵盖100+个变量。可以从源头杜绝用户刷分现象,提升公信力;(4)在应用层面的高度稳定性与业务解释性,使其有着比纯粹机器学习模型更广泛的应用空间。
七、应用展望
通过上述方法在大数据环境下建立的个人信用风险评估系统,可以在以下一些方面进行广泛应用。
(一)征信多元化
传统金融机构的征信信息来源主要是央行征信,但央行征信仅有3亿多人有信贷记录,信贷记录又主要来源于商业银行和农村信用社等金融机构。随着互联网不断渗入人们生活,互联网行为数据是央行征信的有效补充,可以不断强化征信数据的时效性、全面性和层次性,从无形中记录用户的行为,去伪存真,还原真实的客户。从而大大提升信息的利用率和有效性。同时,大数据风险模型的应用,可以不断提高金融机构风险识别、计量能力,从而不断完善征信信息体系架构,为精细化风险定价提供必要的基础和土壤。
(二)授信审批自动化
随着大数据模型开发技术与内部评级体系建设的深度融合,金融机构可更加广泛和全面地将评分/评级结果应用于授信审批,为贷款决策提供参考和支持。大数据风险模型优秀的风险排序及区分能力能够大力推进自动化审批的进程及线上产品的改革与创新。对模型评分高于一定级别且满足其它授信决策条件的,授信申请可以自动通过,不需要再经人工审核,对于评分低于一定级别的,模型自动拒绝其申请;只有评分介于以上两者之间的客户,才由人工介入进行申请审核。
(三)风险监控与预警精确化
风险监控与预警是指借助各类信息来源或渠道,通过对数据与信息进行整合与分析,运用定量和定性分析相结合的方法来发现授信客户及业务的早期风险征兆,准确识别风险的原因,分析其可能的发展趋势,并及时采取有针对性的处理措施,控制和化解授信风险的一系列管理过程。大数据风险模型较传统内部评级体系更为精细和灵敏,可以快速识别贷后风险,为不同的用户设定不同的监控频率、自动筛选高风险客户,制定有针对性的贷后管理措施、贷后管理工作等。
[参考文献]
[1]刘新海,丁伟.大数据征信应用与启示——以美国互联网金融公司ZestFinance为例[J].清华金融评论,2014(10).
[2]余孟杰.产品研发中用户画像的数据模建——从具象到抽象[J].设计艺术研究,2014(12).
[3]黄奇.基于CHAID决策树的个人收入分析[J].数学理论与应用.2009(12).
[4]董师师,黄哲学.随机森林理论浅析[J].集成技术,2013(1).
信用风险评估篇4
长沙银行成立于1997年5月,是湖南省首家区域性股份制商业银行。成立12年来,长沙银行取得了喜人的发展成绩。紧紧围绕“***务银行、中小企业银行、市民银行”的特色定位,以及“四个三”的客户发展计划,初步形成了自身的经营特色和核心竞争能力。由于信用评价制度是一个复杂的系统工程,涉及到各方面的因素,同时我国信用评价研究起步较晚,目前我国尚未建立一套全国性的客户信用评价制度与体系。长沙银行对贷款企业进行信用评级的主要做法是:根据评估的需要设置若干组评估指标,对每一指标规定一个参照值。如果这一指标、达到参考值的要求就给满分,否则扣减该指标的得分。最后将各指标的得分汇总,并按总分的高低给贷款企业划定信用等级,作为贷款决策的依据。该种方法的不足之处在于:(1)评级指标、体系的构成是通过内部信贷专家确定的,缺乏定量化,具有不确定因索,有待进一步深入研究。(2)指标、权重的设置主要依靠专家对其重要性的相对认志来设定,缺乏科学性及客观性。(3)缺少对贷款企业各方面能力的量化分析,在对偿债能力等重要指标上只采用直接观察法,凭经验据报表估计其能力,有很大的主观性。(4)缺少对非财务因素的分析和现金流量的量化预测。
二、加强长沙银行信用风险评估建设
(一)完善信用评价指标体系和评价方法
长沙银行要建立内部评级体系,既要学习借鉴国外模型的理论基础、方***和设计结构,又要紧密结合本国银行系统的业务特点和管理现状,研究设计自己的模型框架和参数体系。要充分考虑诸如利率市场化进程、企业财务欺诈现象、数据积累量不足、金融产品发展不充分、区域风险差别显着、道德风险异常严重等国内特有因素。只有深刻理解中国的金融风险,才能建立起有效的风险评级模型,这需要信用风险系统设计师不仅掌握先进理论方法,还能够对长沙银行的现实问题提出技术对策。
(二)加强培训,提高银行评级人员的素质
长沙银行应加强与国际专业评级机构如穆迪公司、标准普尔公司合作,加快培养、建立评级专业人才队伍,负责内部评级实施和维护工作。同时聘请国外银行和评级公司的专家,对这些人员进行集中培训,或派往国外培训,使之成为风险量化专家和未来的金融工程专家,为国内商业银行新型评级系统的建立健全出谋划策。
在评级过程不可避免的会存在部分道德层面上的问题从而引发操作风险。对此,要从思想意志上对相关人员进行教育,增强其主人翁责任感;要将***治素质好、业务能力强的工作人员优先充实到信贷岗位。
(三)加强行业研究,建立和完善信用风险管理基础数据库
没有高质量的数据积累,信用评级的模型及各项指标则无用武之地。长沙商业银行要完善数据积累,必须在确保客户信息的完整性和准确性前提下,加快信用评级所需数据的收集,同时完善不良客户信息的收集。另外,长沙银行应根据客户的资产负债状况、市场环境等情况及时更新客户信息,以便做出准确的风险分析。在充分获取数据的同时,商业银行要加强信息技术系统的建设,并且要保证信息技术系统的可信度和稳健性。同时,必须按照行业进行适当分工,通过对不同行业的长期、深入研究,了解和把握不同行业的基本特点、发展趋势和主要风险因素,可以为受管理对象在同一行业内部和不同行业之间的风险比较创造必要条件,从而为信用级别的决定提供参照。
三、结语
信用风险评估篇5
【关键词】P2P网贷 信贷风险 Logit回归
P2P网贷是在互联网环境下发展起来的一种全新的借贷模式,但是随着P2P网贷的发展,信誉问题随之而来。其中,缺乏专业的平台信审程序是造成无法准确评估借款人信用的最主要原因,因此,本文拟从个人客户的基本信息、个人客户的贷款记录、个人客户的还贷记录等资料中选取影响借款人还款意愿和能力的指标,尝试构建Logistic回归模型;进一步地,采集人人贷、宜信、红岭创投、拍拍贷、有利网五家P2P平台的样本数据,通过实证分析对网贷平台信用风险的评价起到一定的决策支持作用。
一、Logistic回归模型
Logistic回归模型。在Logit回归中,只需建立以logit(P)为因变量,建立包含p个因变量的Logistic回归模型如下:
■ (1)
其中,X=(X1X2……Xp)T为p维向量,β=(β1β2……βp)为待求的系数。
这就是Logistic回归模型。由(1)可推导出:
■ (2)
■ (3)
已知本文Y∈(0,1),现定义Yi=1为第i个客户按时还款,Yi=0为第i个客户违约,在Logistic回归中本文定义P为客户按时还款的概率,即■。
二、建立Logit回归模型
(一)模型指标的选取
指标变量的信息需要涵盖个人客户三个方面的信息:个人客户的基本信息、个人客户的贷款记录、个人客户的还贷记录。本文选择10项具有普遍性和代表性的指标作为本文的评价指标变量,并建立个人信用风险评价模型。本文对指标进行了分类、赋值,如表1。
表1 指标分述
■
■
本文将原始数据经过赋值处理后,通过SPSS软件对数据进行logit回归处理,运用逐步向前回归方法来筛选对因变量影响最显著的变量,将其纳入模型。由分析结果可以得出,工作年限的回归系数为正,表明其数值越大,该客户还款的概率就越大。工作年限是反映客户工作经验积累的一个指标,工作时间越长,拥有的资产会多一些,违约的概率越小,反之,违约概率较大,即工作时间较短的客户违约风险大于工作年限长的客户,因此其违约的概率也相应提升。
年收入范围在0.05的显著性水平下与是否违约呈现出正相关。收入情况直接决定了借款人财务状况和还款能力,收入越高,选择诚信的可能性就越大,还款能力越强,违约的几率也就越低。这也与实际状况相符,高收入人群往往能够更快地还清贷款。
近半年信用卡逾期次数、近半年贷款逾期次数两个指标在一定程度上是衡量客户信用以及经济状况的指标,本文之所以选择近半年为时间段是因为P2P小额贷款是面对个人以及一些小型企业进行的小额、短期的借贷活动,近半年的各种信用指标在很大程度上能够折射出客户近期的经济状况、信用状况,以及未来短期时间内的还款能力。二者都与是否违约呈现出负相关,即逾期次翟蕉啵信用状况越差,违约的可能性也相应的提高。
将相应的参数代入到模型中可得:
■
根据式(2)或者(3)即可得出客户相应的还款概率P。选取样本中的一组数字举例来说,X6=0.8,X7=0.8,X9=0,X10=1,即可得出logit(P)=3.5906,进而得出■,即还款概率为97.32%。
(二)模型检验
通过向前逐步回归,得到的分类预测结果。由此可以看出,该回归对于个人信用风险预测的准确率较高,对于参与检验的样本的预测准确率达到了89.2%。在最后一步的回归中,未偿还贷款的29个样本,21个预测结果为违约,8个被误测为不违约,准确率达到了72.4%。在按时还款的91个样本中,86个准确预测,5个被误测违约,准确率达到了94.5%。易知,运用Logit回归对个人信用风险进行预测,具有较高的准确率和可信度。
三、结论与展望
本文借助构建个人信用风险评价的Logit回归模型,基于五家P2P平台的120组样本数据,实证分析表明:工作年限、年收入、近半年信用卡逾期次数、近半年贷款逾期次数指标在反映个人信用风险状况方面具有较好的代表性,对于是否违约的样本预测准确率分别达到72.4%、94.5%,并且模型整体预测准确率达到89.2%,表明该模型具有一定的实际使用价值。事实上影响客户能否按时还款的因素还有很多,除了一些能够量化的因素之外,客户本身的道德品质更是一个关键因素。因此,今后的研究如能添加对一些非量化因素的考量,势必能为P2P网贷信用风险的评价、预测以及后续的风险响应和规避等勾勒出一幅完美的***景。
参考文献
[1]陈为民,马超群,马林.我国个人信用评分的发展趋势[J].商业研究,2010,(1):98-101.
[2]王继晖,李成.网络借贷模式下反洗钱风险分析与应对.[J].金融与经济,2011.(9):9-11.
基金项目:本论文受到国家社会科学基金(12CGL031)、***留学回归人员科研启动基金、上海市科委软科学重点项目(16692106500)资助。
信用风险评估篇6
关键词:中小企业;信用风险;模型
中***分类号:F27 文献标识码:A
收录日期:2014年7月3日
引言
作为市场经济的活力之源,中小企业支撑着国民经济“半壁江山”。随着近年外部市场及金融环境趋紧,中小企业发展面临诸多挑战,最突出的就是信用风险导致的融资困难。中小企业融资渠道狭窄,银行信贷是其主要融资渠道,但由于信息不对称造成的逆向选择和道德风险,使银行对中小企业有惜贷趋势。因此,破解中小企业融资困难的关键首先在于完善中小企业各类信用数据库,为银行信贷提供数据支撑;其次要立足国情,学习先进测量技术,开发适合中小企业特点的信用风险度量方法,构建信用风险识别、评估模型,系统评价企业信用风险,改变企业与银行信息不对称的现状,破解中小企业融资困境。信息系统的建设与共享是一项长期而艰巨的任务,目前我国已经认识到数据库在中小企业信用风险管理中的重要性,人行征信中心的企业信用信息数据库已经逐渐成熟,司法、环保、社保、质检等中小企业信用数据已经逐步共享完善。所以,目前当务之急是合理设计中小企业信用评价模型,为银行信贷提供技术支持,降低信用风险。
一、传统信用风险度量模型分析
传统信用风险分析评估方法已相当成熟,在国内外银行信贷决策中应用较多,主要包含专家制度法、信用评级法、信用评分法。
(一)专家制度法。20世纪70年代前,企业信用风险评估主要是银行专家依据品格、资本、偿付能力、抵押品、经济周期等5C要素进行主观判断,后来衍生出5P模型(个人因素、目的因素、偿还因素、保障因素、前景因素)和5W模型(借款人、借款用途、还款期限、担保物、如何还款)。纵观这三种模型,都是定性分析,无法量化风险水平,而且严重依赖专家的主观判断,这会造成银行信贷决策官僚主义作风盛行,降低银行在金融市场中的应变能力,同时专家制度在对借款人进行信用分析时,难以确定共同遵循的标准,造成信用评估的随意性和不一致性。
(二)信用评级法。信用评级法是美货币监理署开发的,该方法将现有贷款安全级别分为5类:正常类、关注类、次级类、可疑类、损失类,后来细化为10类:AAA、AA、A、BBB、BB、B、CCC、CC、C、D(标注普尔)。评级后再根据级别提取不同贷款准备金率。
(三)信用评分法。和前两种方法相比,信用评分法是一个量化法,最著名的模型就是Z计分模型(Z-score):它的基本思想是利用数理统计中的辨别方法分析银行的贷款情况,建立一个可以在最大程度上区分信贷风险度的模型,得到最能够反映借款人的财务状况的好坏,具有预测和分析价值的比率,从而对企业进行信用风险状况评估。模型如下:
Z=0.012X1+0.014X2+0.033X3+0.006X4+0.999X5
变量解释:
X1=流动资本/总资产;X2=留存收益/总资产;X3=息税前收益/总资产;X4=优先股和普通股市值/总负债;X5=销售额/总资产=主营业务收入净额/总资产。
判断准则:
Z
Z-score模型主要是利用财务指标进行加权平均,该模型有2大缺陷:①企业财务数据反映的是过去的信息,利用这些数据进行风险度量的结果也只是对过去风险水平的测量;②中小企业多半不是上市公司,财务指标原始数据获得困难。
二、现代判别法
(一)统计模型法。统计模型法是典型的定量评级法,根据中小企业信用数据,统计模型,计算其违约风险的大小常见的有Logit模型和Probit模型。
1、Logit模型。Logit模型是通过一个取值为0和1之间的 Logistic函数来进行二类模式分类。不要求数据满足正态分布,这是其最大优点;另外,自变量、因变量之间不是线性关系,模型如下:
p=
s=c0+ckxk
xk(k=1,2,…m)为信用风险影响变量(多为企业财务指标),ck(k=0,1,2,…,m)为技术系数,通过回归估计获得。回归值p∈(0,1)为中小企业信用风险分析的判别结果。如果p接近于0,则被判定为“差类”企业;若p接近于1,则被判定为 “好类”企业。即p值离0越远,企业违约风险越小;反之,违约风险越大。
2、Probit模型。Probit模型假定误差项服从标准正态分布,样本企业的债信质量得分也服从标准正态分布。模型如下:
Yi*=βnχin+εi=XiB+εi
Xi与B分别为解释变量与回归系数构成的向量;Yi*为样本公司有财务危机的倾向。当Yi*>0时,表示样本企业有债务危机倾向;当Yi*
统计模型确实可以凭借统计分析提供有参考价值的依据,比较容易在评级效果上取得一致性。但存在两点缺陷:①缺乏有力的理论基础支持区别函数中的权重及自变量。在信用评分模型中的权重及自变量通常只能维持短期的稳定状态,特别是当金融市场发生变化时,其他的财务比率也许在解释违约风险概率上容易造成预测模型的不稳定。②模型忽略了难以计量但又重要的因素,如借款人声誉。
(二)人工智能法。人工智能法主要包含专家系统和神经网络。
1、专家系统。专家系统其实是模拟专家运用知识进行推理的计算机程序,将专家解决问题的推理过程再现从而成为专家的决策工具或为非专业决策者提供专业性建议。专家系统一般采用归纳推理法,分析一系列案例,发现其规律。归纳推理有两种途径:一是利用大量案例信息来发现规律的信息驱动型;二是利用先验模型指导来发现规律的意识模型驱动型。利用计算机的人工智能法大大降低了风险评估的难度,但是专家系统中知识的获取始终是瓶颈,极大地影响着专家系统在信用分析领域的应用前景。
2、神经网络(PNN)。神经网络是一种具有模式识别能力、自组织、自适应、自学习特点的计算机制,该方法主要将知识编码用于整个权值网络,具有包容错误的能力,同时对数据的分布没有严格要求,也不必要详细表述自变量与因变量之间的函数关系。该模型原理是通过神经网络的分类功能进行信用风险分析的。首先找出影响分类的因素,作为PNN的输入量,然后通过有导师的或无导师的训练形成神经网络的信用风险分析模型,用于新样本的判别。
三、结论
信用风险度量方法大致经历了从定性到定量;从指标分析到模型分析;从财务指标分析到资产市场价值分析;从只考虑公司这个微观客体到把宏观经济因素考虑在内。考虑到我国中小企业大部分为非上市公司,Z-score模型无法普遍推行使用。另外,我国中小企业信用数据库尚不成熟,历史信用数据积累少,质量较差,当前运用现代信用风险度量技术评估我国中小企业信用风险尚不成熟。但是,目前银行单独使用传统分析法,将大部分资金匮乏的中小企业拒之门外,逼迫中小企业求助民间贷款,年利息高达30%。“贷款越来越少,利息越来越高”成了中小企业发展的罩门。因此,度量中小企业信用风险的最有效办法是将传统方法与现代判别法相结合,同时载入财务数据与非财务数据,进行多元统计分析。
主要参考文献:
[1]安东尼・桑德斯等.刘宇飞译.信用风险度量[M].北京:机械工业出版社,2001.
信用风险评估篇7
关键词:煤炭企业;支持向量机;客户信用;风险评估
中***分类号:TP301 文献标识码:A文章编号:1007-9599 (2011) 12-0000-01
Support Vector Machine Technology Applied Research in the Coal Customer Credit Risk Assessment
Zhao Kai,Wang Wei
(Pingdingshan College,Pingdingshan467000,China)
Abstract:The support vector machine technology and its improvement,applied to the coal business customer credit risk assessment process for the smooth operation of the coal companies to provide decision support.
Keywords:Coal enterprises;Support vector machine;Customer credit;Risk assessment
一、煤炭客户风险评估等级指标体系
要对煤炭客户的信用情况进行定级评估,首先牵涉到的问题是用于分析定级的指标建立,在信用管理科学的发展过程中,不同时期,不同专家提出了不同的信用评价指标体系,其中影响最大的是“5C”:
(1)品格(Character):着重分析客户是否有依照协议按期如数缴纳货款的意愿和行为,以往的货款缴纳纪录是否保持良好。
(2)能力(Capacity):着重考察客户广泛运用其才能,使得其生产的产品具有盈利的能力。
(3)资本(Capital):了解客户的自有资金是否雄厚,其中要注意的是,不仅要分析其资本净值,同时还要分析其负债数量。
(4)担保或抵押(Collateral):考核客户在短期拖欠款项的情况下,能否提供担保,且担保品是否充足可靠。
(5)环境条件(Condition):判断客户所处的环境和所属的行业前景是否有利于业务的经营。前者包括客户内部环境,如经营特点、经营方法、技术状况等,以及社会大环境,如劳资关系、***局变动、社会环境、商业周期、季节变动、一般经济状况、国民收入水平等;后者包括行业发展、同业竞争等。
鉴于此,本文在构建煤炭客户信用风险管理的指标体系时,考虑到信用数据的来源、企业信用管理人员资源等这些具体情况,以实用为原则,便于实际的操作。通过建立信息收集卡的方式,由企业指定的信息员完成“5C”中各子指标内容的相关表格。
二、支持向量机技术在煤炭客户信用风险预警中的研究
对于支持向量机来说,标准的支持向量机模型主要用来进行分类操作,但是信用风险的评估过程只要分成有风险与无风险显然是无法满足需求的,需要进一步的结果才能更好的利用结果进行决策分析。而在标准的支持向量机模型表达式 中,可以看到决策函数只用到了划分超平面函数的符号信息。记分类函数 ,如果 是正的,则 是正类,如果 是负的,则 是负类。但 与决策函数相比较,除了包含符号信息,还包含了数值信息。如果两个样本 和 的分类函数 和 都是正的,并且有 大于 ,则 被分错的概率小于 被分错的概率,因为 的绝对值比较小,比较接近负数, 是负类的概率就比较大。可以推测, 的绝对值越接近0, 属于负类的概率越大。
由上可知, 的值有一定的数值意义。对风险评估而言,一般来说 值越大越有可能是正类,即欠费的可能性越小;反之, 越小越有可能是负类,即欠费的可能性越大。
设支持向量机模型中最终 得到的结果r1是(负无穷,正无穷)之间,因需要把结果转为概率[O,lOO]之间,令 ,并把r2转换到[O,100]之间。
过程如下:
r2=1/(2^(-r1+10000000));
if(r2>1)
r=100;
else
r=l00*r2;
r即为最后的风险概率。
三、煤炭客户信用风险预警的流程
具体步骤:
(1)使用企业客户风险预警模型的5C指标体系。
(2)根据已经设计出的指标进行数据的采集。
(3)把采集到的数据用Hot Deck算法进行数据值填补。
(4)计算所有指标的信息增益值,根据其值从大到校进行指标排序,选出最终建模的指标。
(5)将数据进行加权,并分成训练集和测试集两部分。
(6)使用前文所使用的SVM模型,用训练集进行模型的训练,再用测试集进行模型的测试,得到最终的结果。
其中,实验数据采集后运用Hot deck算法进行数据填充,具体步骤如下:
(1)用属于同一类别的样本组成簇,对于m类问题,则一共有m簇;
(2)用簇内所有样本(包括完整样本和有缺失样本)为每一簇的每个属性确定一个填补值:如果属性a是连续属性,则用簇内所有在属性a非空的样本的平均值作为该簇属性a的填补值,如果属性a是离散属性,则用簇内所有在属性a非空的样本的众数作为该簇属性a的填补值,m类n维问题最多有 个填补值;
(3)用步骤2确定的填补值填补相应的样本缺失属性。
通过上述实现过程,我们就可以建立支持向量机的风险评估模型了,除了根据模型找出高风险用户外,我们还可以用映射的方法把简单的高、低风险用户的评价转化为对每个用户评估中一个1~100的风险值(1表示出现风险的可能性大概是1%,也就是不太可能欠费;100表示出现风险的可能性基本是100%,也就是必然会欠费了)。
四、结束语
鉴于煤炭企业的客户风险管理问题的研究现状,本文从分析煤炭企业风险环境,对客户信用风险进行了相对系统和全面的风险识别,并初步确定了相关的风险指标体系,给煤炭企业全面认识客户风险提供了研究基础。在风险识别的基础上,本文建立了基于支持向量机的客户风险评估模型,对客户信用风险的分析及预测做出了一定的研究工作。
参考文献:
[1]方邦鉴.打造诚信单位:信用制度建设与信用管理实务[M].中国经济出版社,2004,1:115
[2]高华.基于聚类分块支持向量机的入侵检测算法[D].南京理工大学,2007
信用风险评估篇8
>> 基于KMV模型的湖北省农业银行信用风险度量及应对策略研究 KMV模型在商业银行信用风险管理下的实证研究 基于BP神经网络的商业银行信用风险评估模型研究 基于KMV模型的信用风险度量实证研究 基于SV—KMV模型的信用风险度量研究 基于KMV模型的市***债券信用风险研究 基于五级分类支持向量机集成的商业银行信用风险评估模型研究 基于KMV模型分析利率市场化冲击对商业银行信用风险影响 KMV模型在我国商业银行信用风险度量中的具体应用 基于宏观经济环境的银行信用风险度量模型研究 基于logistic模型的我国商业银行信用风险管理研究 基于CreditMetrics模型的商业银行信用风险应用研究 基于KMV模型的我国创业板企业信用风险评估 基于KMV模型对我国不同规模上市商业银行的信用风险研究 基于KMV模型研究商业银行对中小企业信用风险评级的改进 基于KMV模型对商业银行的信用风险分析 SOM神经网络模型在商业银行信用风险评估中的应用研究 我国商业银行信用风险评估模型的实证分析 基于KMV模型的上市公司信用风险研究 基于修正KMV模型的创业板公司信用风险研究 常见问题解答 当前所在位置:l,2015.11.25.
[2]Lee W.Rededinition of the KMV model's optimal default point based onGenetic Algorithms-Evidence from Taiwan[J].Expert Systems with Applications,2010.8.
[3]Antonio Camara,IvilinaPopova,Betty Simkins.A comparative study of the probability of default for global financialfirms[J].Journal of Banking & Finance,2012.36.3.
[4]David W.Munves,AllertonSmith,David Hamilton.Banks and their EDF Measures NOW and Through the Credit Crisis:Too High,TooLow,or Just About Right[J].Moody’s ANALYTICS,2010.11.
[5]凌江怀,刘燕媚.基于KMV模型的中国商业银行信用风险实证分析――以10家上市商业银行为例[J].华南师范大学学报(社会科学版),2013.5.
[6]李琦.基于KMV模型的商业银行信用风险管理研究[D].上海:复旦大学,2014.
转载请注明出处学文网 » 信用风险评估范文精选