【摘 要】笔者在研究抛物线时发现了抛物线的两个结论,抛物线上的切线有很多性质,它能和许多角联系起来,解决一些角与角的转换问题,通过参考文献,笔者现将之整理成文,现与大家共同探讨。
【关键词】抛物线 切线 角平分线 重要结论
【中***分类号】G632 【文献标识码】A 【文章编号】1674-4810(2015)12-0128-02
一 两个结论
结论1:如***1,F是抛物线的焦点,M是抛物线上任意一点,MT是抛物线在M的切线,MN是法线,ME是平行于坐标轴的直线,则法线MN必平分∠FME,即φ1=φ2。
结论2:如***2,M、N、P三点在抛物线的准线上,M、N在P点异侧,F是抛物线的焦点,过P向抛物线引两条切线PA、PB,则PA、PB平分∠FPM,∠FPN。
上述两个结论主要考查直线、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力和创新意识。
二 通性通法分析
比较这两个结论可以看出它们的共同特征:(1)条件:抛物线上的切线问题,给定抛物线C:y2=2px。结论1是在抛物线上任取一点M做一条切线MT,结论2是从抛物线准线上任取一点P向抛物线上引两条切线PA、PB。切点为A、B;(2)研究的问题相近:切线平分角的问题,涉及直线与焦点有关。查阅高考试题及有关高中的数学资料,可以找到诸多与此相似的问题,由于抛物线方程可以看作为函数的表达式,因而研究的思路更加宽阔、活跃,在高考试题中频频出现。
求抛物线切点弦所在直线方程的常见通法是:设出切点坐标,用导数表示切线的斜率写出切线方程,利用已知点在切线上展开思路。(2)联立方程研究位置关系。利用已知设出切线方程,联立切线方程与抛物线方程,利用判别式为0展开思路。(3)待定所求直线方程,通常用斜截式。联立直线方程与抛物线方程,用韦达定理列出切点坐标,再利用导数的几何意义列式消参求出所待定的系数。用导数求切线的斜率和联立方程研究直线与抛物线的位置关系均为课标的要求,在人教A版教材中的例、习题中都有相应的题目。
三 解题思路和策略
两个结论都先从导数的几何意义入手,将切点坐标设出来。
结论1是根据两垂直直线斜率之积等于-1,根据点斜式写出垂直与切线且经过切点的直线方程,计算出此直线与抛物线轴的交点坐标N,计算出|FN|和|FM|的长度,判断出FNM是等腰三角形,再根据ME∥轴线推出内错角相等,即证。详细证明过程如下:
结论1证明:取坐标系如***,设此时抛物线方程为y2=2px(p>0),因为ME平行x轴(抛物线的轴),φ1=φ2,设点M的坐标为(x0,y0),对y2=2px两边求导得:2yy′=2p。
即: 所以,直线MT的斜率为 。
则法线MN的方程是y-y0=- (x-x0),令y=0,
便得到法线与x轴的交点N的坐标(x0+p,0),所以|FN|=
|x0+p- |=x0+ ,又由抛物线的定义可知,|MF|=x0+ ,
|FN|=|FM|,由此得到φ1=φ2=φ3,若M与顶点O重合,
则法线为x轴,结论仍然成立。
结论2是设出切点坐标,利用点斜式写出切线PA所在的直线方程,根据角平分线定理:角平分线上的点到角两边的距离相等,得出切点A到准线的距离与切点A到PF的距离相等。得出PA平分∠FPM,同理得出PB平分∠FPN。
详细证明过程如下:
所以点A到FP的距离等于点A到准线的距离,故PA平分∠FPM,同理PB平分∠FPN。
四 学生应该突破的瓶颈
第一,在解题过程中,不会应用导数的几何意义。导数是解决函数问题的重要工具,导数的几何意义使得求曲线的切线方程十分便捷。
第二,没有养成用数学思想指导、分析问题的好习惯。这类问题的典型特征是变量多、关系式复杂,容易使学生迷失方向,看到很多式子不知如何推算。而产生这种问题的原因是没有用数学思想去指导分析问题,没有从整体上对解题进行规划,明确解题的方向路线。解题思路是围绕如何选择有效途径消参来展开,推算则不再盲目。
参考文献
[1]王诚祥、马家祚主编.直线与圆锥曲线[M].南京:河海大学出版社,2006
[2]傅建红.圆锥曲线综合问题[J].数学教学通讯:数学金刊(高考),2013(1)
[3]龚伟枫、吴洁.圆锥曲线新解[J].高等数学研究,2013(4)
转载请注明出处学文网 » 高中数学抛物线两个结论的推导