脱硫工艺论文第1篇
结合我厂实际,我厂脱硫工艺采用了炉内掺烧脱硫剂(电石泥)固硫,和炉外烟气FGD湿法脱硫相结合的二段式脱硫方式。生成副产物未氧化的亚硝酸钙(CaSO3•1/2H2O)与自然氧化产物石膏(CaSO4•2H2O)的混合物直接抛弃。
1.炉内脱硫:
过程:用电石泥作固硫剂,煤泥经刮板机进入下仓,在下仓投入电石泥,与煤泥按一定比例混掺,由预压螺旋送至搅拌仓,再次搅拌均匀后由浓料泵送至锅炉本体内进行燃烧,达到固硫的效果。
优点:炉外脱硫设施前SO2浓度可以降至500-800mg/m3,电石泥的固硫率在30%左右。
无需添加任何其他设备即可进行,节约成本及设备投入。
炉内固硫过程示意***
2.炉外脱硫:
过程:整个炉外脱硫系统主要由脱硫剂制备系统、吸收循环系统、副产物处理系统、配电及自动控制系统四大部分组成。
电石泥投入化灰池,清水泵开启注入清水,然后进入搅拌池,搅拌均匀使之与水充分混合,制备成为电石浆液。加浆泵经管道将浆液送至脱硫塔。首先烟气与浆液直接接触脱硫,然后4台浆液循环泵分别将电石浆液打入脱硫塔上部的喷淋装置,电石浆液经雾化后再次与烟气中的SO2反应,进一步除去烟气中的SO2。脱硫过程中所产生的未氧化的亚硝酸钙(CaSO3•1/2H2O)与自然氧化产物石膏(CaSO4•2H2O)的混合物经排渣系统排至沉灰池。
优点:整个脱硫系统位于烟道末端,除尘系统后,其脱硫过程的反应温度适中;
湿法烟气脱硫反应是气液反应,脱硫反应速度快,脱硫效率高,钙利用率高;
系统可利用率高、运行费用低、维护简单、运行人员少、能确保人员和设备的安全、能有效地节约和合理利用能源;
系统位于锅炉引风机之后,且有旁通烟道,脱硫系统相对***,运行不会影响主体设施,且维护检修方便;
炉外脱硫过程示意***
2电石泥脱硫机理
在燃烧过程中,燃煤中的硫可以分为有机硫和黄铁矿硫两大部分,硫分在加热时析出,如果环境中的氧浓度较高,则大部分被氧化为SO2而很少部分残存于炉渣中。电石泥的主要成分是Ca(OH)2。
1.反应机理
Ca(OH)2+SO2=CaSO3.1/2H2O+1/2H2O
CaSO3.1/2H2O+3/2H2O+1/2O2=CaSO4+H2O
影响循环流化床锅炉脱硫效率的主要影响因素:(1)Ca、S摩尔比的影响。Ca、S摩尔比被认为是影响脱硫效率和SO2排放的首要因素,根据试验表明,Ca、S摩尔比为1.5~2.5时,脱硫效率最高,而继续增加Ca、S摩尔比或脱硫剂量时,脱硫效率增加的较小,而且继续增加脱硫剂的投入量会带来其他副作用,如增加物理热损失,影响燃烧工况等。(2)床温的影响。床温的影响主要在于改变了脱硫剂的反应速度、固体产物分布。从而影响脱硫效率和脱硫剂的利用率。有关文献表明,床温控制在850~900℃时,能够达到较高的脱硫效率。(3)脱硫剂粒度的影响。
2.计算用量
根据电石泥脱硫理论,按照给煤含硫量1.6%,Ca、S摩尔比2.5,电石渣中含水、杂质比例45%(其中含水40%,杂质5%),其余成分Ca(OH)2,07年我厂全年总耗煤约为耗煤量104253吨量计算,
(Ca的摩尔质量40,O的摩尔质量16,H的摩尔质量1)
进行理论计算
我厂每年产S量:104253×1.6%=1668.048(吨)
每年需Ca量:2.5×40×1668.048/32=5212.65(吨)
每年需Ca(OH)2量:(5212.65/40)×74=9643.4025(吨)
理论需要消耗电石泥量:9643.4025/(65%)=14836(吨)
3.脱硫试验
为了验证脱硫效果,对加电石渣进行脱硫加以记录(一小时中4次记录值)
4.数据分析
按照一定的比例加入电石泥,脱硫效率可以达到90%,能够将二氧化硫的排放浓度降到国家环保要求的480mg/m3以下。
5.存在问题
由于煤泥中搅拌添加电石泥,添加比例不好控制,搅拌不均匀,导致煤泥打空,容易出现个别点排放量超标。
6.建议
增加电石泥给料和输送设备,确保掺烧比例及掺烧均匀。
3结论
(l)我厂采用炉内掺烧脱硫剂(电石泥)固硫,和炉外烟气脱硫FGD湿法脱硫相结合的二段式脱硫方式脱硫取得成功,脱硫效果能够达到国家环保要求。
(2)按照每年用煤炭10万t计算,可以消耗近1.4万t电石废渣。不仅减少了这些废渣对环境的污染,而且为以废治废开辟了新的途径。
(3)利用废电石渣作为脱硫剂,不再采购石灰石大大地节省了运行费用。
(4)系统维护简单、运行人员少、能确保人员和设备的安全。
4参考文献
《电石渣干粉在电厂烟气脱硫工艺中的应用》---作者:史红
《燃煤炉预混—喷钙二段脱硫技术研究》------作者:刘建忠,周俊虎,程***,曹欣玉赵翔,岑可法
《中小容量锅炉湿法烟气净化装置及系统优化》----作者:陶邦彦梅晓燕
脱硫工艺论文第2篇
[关键词]烟气脱硫湿法干法比较
1概述
烟气脱硫是电厂控制SO2排放的主要技术手段,目前已达到工业应用水平的烟气脱硫技术有十余种,大致可以分为干法和湿法,但能在300MW以上大容量机组使用的成熟脱硫工艺并不多。根据国内目前的实际应用推广情况,国内各大脱硫公司已投运的300MW级机组烟气脱硫装置均为石灰石/石膏湿法。干法技术在国内300MW大容量机组上全烟气、高脱硫率还没有运行示例。最近武汉凯迪股份公司正在推广德国WULLF的RCFB(内回流循环流化床)技术,该技术在国外2000年曾有1套在300MW机组上投运,3个月后停运,现国内有1套刚开始在恒运电厂1×210MW机组上投运。另有1套已投运的CFB脱硫,运用于小龙潭1×100MW机组。
以下对湿法和干法两种工艺流程,全烟气、高脱硫率下的技术、经济进行了综合比较。
2石灰石/石膏湿法脱硫技术流程特点
石灰石/石膏湿法脱硫技术是目前世界上技术最为成熟、应用业绩最多的脱硫工艺,应用该工艺的机组容量约占电站脱硫装机总容量的85%以上,应用单机容量已达1000MW。其脱硫副产物—石膏一般有抛弃和回收两种方法,主要取决于市场对脱硫石膏的需求、石膏质量以及是否有足够的堆放场地等因素。
湿法工艺技术比较成熟,适用于任何含硫量的煤种和机组容量的烟气脱硫,脱硫效率最高可达到99%。
国内各家公司分别引进了世界上先进的几家大公司的湿法工艺技术:B&W(巴威)、斯坦米勒、KAWASAKI(川崎)、三菱、GE、DUCON,都能根据电厂的实际情况设计出最佳的工艺参数。
2.1石灰石/石膏湿法工艺流程
石灰石/石膏湿法脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液,也可直接用湿式球磨机将20mm左右的石灰石磨制成吸收浆液。当采用石灰吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的SO2与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带有的细小液滴,经气气加热器(GGH)加热升温后排入烟囱。脱硫石膏浆液经脱水装置脱水后回收。由于吸收浆液的循环利用,脱硫吸收剂的利用率很高。
电厂锅炉烟气进入FGD,通过升压风机加压,经GGH降温至约100℃后进入吸收塔,吸收塔脱硫效率为96~99%,整个系统的脱硫效率不低于90%。从吸收塔出来的净烟气温度约为47℃,经GGH升温至80℃后从烟囱排放。
该工艺原理简单,工艺技术比较成熟,脱硫效率和吸收剂的利用率高,即Ca/S=1.03时,脱硫效率大于95%,能够适应各种煤种,适应大容量机组,运行可靠,可用率高,副产品石膏具有商业价值。
2.2石灰石/石膏湿法脱硫技术主要技术特点及指标
2.2.1脱硫效率高,一般不低于90%,最高可以达到99%。
2.2.2脱硫剂利用率高,达90%以上。Ca/S比低,只有1.01~1.05,国内现正在实施的的几个工程均不大于1.03。
2.2.3吸收塔采用各种先进技术设计,不仅解决了脱硫塔内的堵塞、腐蚀问题,而且改善了气液传质条件,从而提高了塔内脱硫效率,减少了浆液循环量,有效降低了浆液循环泵的功耗。目前脱硫岛电耗一般为机组装机容量的1~1.5%。
2.2.4喷淋空塔内烟气入口采用向下斜切式入口,烟气由下自上流动,延长了气体分布路径,不仅有利于气体分布均匀,而且由于气体的翻腾形成了湍流,更有利于气液的传质传热。
2.2.5采用计算机模拟设计,优化脱硫塔及塔内构件如喷嘴等的布置,优化浆液浓度、Ca/S比、浆液流量等运行指标,可以保证脱硫塔内烟气流动和浆液喷淋均匀,以最小的消耗取得最好的脱硫效果。
2.2.6根据烟气含硫量,采用不同层数(2~4层)的浆液喷淋层,确保取得最佳的脱硫效果。
2.2.7塔内设置氧化空气分布系统,采用塔内强制氧化,氧化效果好。
2.2.8喷淋层采用交叉联箱布置,使喷淋管道布置更合理,降低了吸收塔高度。
2.2.9采用机械搅拌。
2.2.10废物得到良好的处理,其中废渣变成了优质石膏,完全可以取代高品位的天然石膏。废水采用回用技术,可以达到零排放。
2.2.11稳定性高,适应性强,可靠性99%以上。
2.2.12应用多、运行经验丰富。
3干法RCFB脱硫工艺脱硫技术流程特点
干法有LIFAC(炉内喷钙尾部增湿活化)、CFB(循环流化床)等工艺,在国家有关部门的技术指南、火电厂设计规程上均限于在中小机组或老机组上实施。CFB最早由德国鲁奇(LURGI)公司开发,目前已达到工业应用的CFB法工艺有三种:LURGI公司的CFB、德国WULFF公司的RCFB(内回流式烟气循环流化床)、丹麦FLS公司的GSA(气体悬浮吸收),国内分别由龙净环保、凯迪电力、龙源环保等公司引进,目前多在中小机组上运用,其中只有WULFF公司的RCFB技术向300MW机组上推广,所以本文中作比较的干法仅指RCFB。
3.1RCFB的发展历史
循环流化床(CFB)的发展历史其实很长。循环流化床CFB烟气净化工艺的实验室技术研究开发工作开始于1968/1969年,1970~1972年CFB烟气净化工艺在德国电解铝厂获得应用,烟气流量为15,000m3/h。1985~1987年,首台CFB烟气脱硫示范装置在德国一家燃褐煤电站得到应用,处理烟气量为40万m3/h(相当于30万机组气量的四分之一),采用消石灰为脱硫剂。在此基础上,各公司分别又开发出了上述新一代CFB脱硫工艺(第三代)。
3.2RCFB脱硫工艺流程
RCFB工艺主要采用干态的消石灰粉作为吸收剂,由锅炉排出的烟气从流化床的底部进入,经过吸收塔底部的文丘里装置,烟气速度加快,并与很细的吸收剂粉末相混合。同时通过RCFB下部的喷水,使烟气温度降低到70~90℃。在此条件下,吸收剂与烟气中的二氧化硫反应,生成亚硫酸钙和硫酸钙,经脱硫后带有大量固体的烟气由吸收塔的上部排出,排出的烟气进入除尘器中,大部分烟气中的固体颗粒都被分离出来,被分离出来的颗粒经过再循环系统大部分返回到吸收塔。
RCFB的控制系统主要通过三个部分实现:
1.根据反应器进口烟气流量及烟气中原始SO2浓度控制消石灰粉的给料量;
2.反应器出口处的烟气温度直接控制反应器底部的喷水量,使烟温控制在70~90℃范围内。喷水量的调节方法一般采用回流调节喷嘴,通过调节回流水压来调节喷水量;
3.在运行中调节床内的固/气比。其调节方法是通过调节分离器和除尘器下所收集的飞灰排灰量,以控制送回反应器的再循环干灰量,从而保证床内必需的固/气比。
3.3RCFB脱硫技术的主要技术特点及指标
3.3.1耗电量在机组容量的0.5~1.0%。脱硫率80%时,为0.6%左右;脱硫效率大于90%时,塔内物料量增加引起系统阻力的增大而使电耗大幅上升。
3.3.2在塔的顶部区域加装了导流板,在塔内加装了紊流装置。
3.3.3脱硫率>90%,Ca/S为1.2~1.5。石灰活性必须高且稳定,达到T60标准(软缎石灰,四分钟内水温上升60℃)。
3.3.4塔内平均流速4m/s左右。10米左右直径的流化床内流场比较复杂。
3.3.5用消石灰作为脱硫剂。石灰消化后,以消石灰干粉形式送入流化床吸收塔。喷入足够的水分保证脱硫效果,水分越大脱硫率越高。
3.3.6严格控制床温。床温偏低时设备有腐蚀,偏高时脱硫效率及脱硫剂利用率下降。
3.3.7塔内的水分要迅速蒸发掉,以保证灰渣干态排出。
3.3.8在煤的含硫量增加或要求提高脱硫效率时,不增加任何设备,仅增加脱硫剂和喷水量。
3.3.9不另设烟气旁路,当FGD停运时,脱硫塔直接作为烟气旁路使用。
3.3.10在中小电站或工业锅炉上应用较多,300MW机组上国内外仅应用了1套并只有短期运行的经验。
3.3.11RCFB脱硫渣的利用
RCFB烟气脱硫技术吸收剂为钙基化合物,脱硫渣中的主要成分为CaSO3等。但不同电厂的脱硫渣的成份是不一样的,若要有效利用,必须做个案研究。
不包括前除尘器的灰,CaSO3·1/2H2O含量占50±10%,根据德国WULFF公司提供的部分个案研究实例,是可以应用的。国内的南京下关电厂对LIFAC技术的脱硫渣已作了一些个案研究,恒运电厂正准备和凯迪公司合作,开展脱硫灰利用的研究工作。
4石灰石-石膏湿法与干法RCFB比较
4.1工艺技术比较
4.1.1在300MW以上机组FGD上的应用
干法RCFB:国外从小机组放大到300MW机组仅有1台,国内还没有300MW机组的实运装置,仅在中小机组或工业锅炉上有实运装置。
从国内引进FGD的经验来看,各个电厂都有一定的实际情况,设计时也必须满足各个电厂的特定情况。据报道,几家引进CFB的公司在中小机组的示范装置上大多碰到了较严重的问题,经大量长时间调试整改后,有的仍达不到设计要求,有的甚至需更换重要部件,更为严重的机组无法按正常出力运行。
国内唯一的一套RCFB是广州恒运电厂FGD,从运行情况来看,虽然将石灰标准从T60降至T50左右,消化装置仍不能正常运行,目前靠买消石灰维持;除尘器有堵塞等问题,曾造成了电厂停运,但粉尘泄漏较严重;控制系统还不能稳定监测和调控脱硫装置的运行。
石灰石-石膏湿法:已很成熟,国外有各种条件下机组上的运行经验,国内虽然运行实例不多,但国内公司引进的均为国外先进可靠的技术。其市场占有率占电站脱硫装机总容量的85%以上,应用单机容量已达1000MW。国家相关职能部门在组织国内专家充分调研的基础上,提出指导性意见:在新、扩、改300MW机组FGD上或要求有较高脱硫率时,采用石灰石-石膏湿法技术。在火电厂设计技术规程中,也作了同样的规定。
现在大部分设备均可以实现国产化,初始投资大幅降低,备品备件的问题也将得到彻底解决。
4.1.2适用煤种
干法RCFB:据国内各大研究单位的报告及国外的部分应用实例,CFB适用于中、低硫煤。对高硫煤,较难达到环保要求,且投资与运行费用将大幅上升。RCFB是否适应高硫煤的大机组,需进一步论证。
石灰石-石膏湿法:不限。
4.1.3Ca/S比
干法RCFB:脱硫率>90%时为1.3~1.5。氧化钙纯度要求≥90%,并要有非常高的活性(T60标准),达不到以上要求时,将影响装置的脱硫率及正常运行。
石灰石-石膏湿法:1.01~1.05,一般为1.03,纯度达不到要求时,最终仅影响脱硫副产品石膏的质量。
4.1.4脱硫效率
干法RCFB:稳定运行一般在80%左右,若需要进一步提高,则需降低烟气趋近温差,增加Ca/S和喷水量,但会对下游设备如除尘器、引风机等带来不利影响。
95%的脱硫率对干法技术来讲,已达到高限(国外为90%),当环保要求进一步提高时,改造较困难。
烟气含硫量波动时,因为有大循环灰量,难以灵敏调整控制,脱硫效率难以保证。
石灰石-石膏湿法:一般可在95%以上稳定运行,对环保要求的适应性强。
烟气含硫量变化时,易于调整控制,脱硫效率较稳定。
4.1.5耗电量
干法RCFB:机组容量的0.5~1.0%,脱硫效率在80%左右时,为0.6%左右;当脱硫效率>90%时,耗电量上升很快,将达到1%左右。
石灰石-石膏湿法:机组容量的1.0~1.5%。
.1.6对ESP(电除尘器)的影响
干法RCFB:初始设计时ESP2负荷很高,进口浓度800g/Nm3(远高于电厂正常电除尘器进口的20~30g/Nm3),ESP2除尘效率将达到99.9875%。随脱硫率的变化增加Ca/S,ESP2负荷急剧增加,其出口含尘浓度能否达标值得考虑。环保要求还将进一步提高,在即将实行的《火电厂污染物排放标准》(征求意见稿)中,火电厂最高允许烟尘排放浓度为50mg/Nm3。
当烟气含硫量变化时,为保证脱硫率,或满足环保要求的不断提高而提高脱硫效率,采取以上降低烟气趋近温差,增加喷水量和Ca/S措施时,将导致ESP低温腐蚀,排灰易粘结(塔壁也易于结灰),严重时,将影响装置的正常运行,在中小机组的运行中是普遍存在的问题。
石灰石-石膏湿法:没有后ESP,无影响。经脱硫塔洗涤后,烟尘总量减少50~80%左右,FGD出口烟尘浓度小于50mg/Nm3。
4.1.7对机组的影响
干法RCFB:因故障停电等原因使CFB停运,会导致塔内固态物沉积,重新启动需清理沉积固态物,由于无旁路,当后ESP和回灰系统发生堵塞进行检修时,机组将停运。
石灰石-石膏湿法:因FGD是***系统,有旁路,故无影响。
4.1.8对机组负荷的适应性
干法RCFB:负荷的变化会引起烟气流速的变化,从而影响脱硫反应及装置的运行。
石灰石-石膏湿法:较好。
4.1.9水
干法RCFB:石灰消化一般需热水,且水质要求高;无废水排放。
石灰石-石膏湿法:耗水量相对稍多一点,但水质要求不高,可用水源水;仅有少量废水排放。
4.1.10吸收剂制备
干法RCFB:需大批量外购符合要求的T60标准的石灰粉,以目前投运电厂的运行情况来看,石灰消化存在诸多问题,如果采购满足要求的消石灰Ca(OH)2将增加业主采购成本。最大问题是一般较难购买到品质稳定的高活性(T60标准)的石灰粉。RCFB脱硫效果的保证及装置的运行可靠性完全依赖于石灰的高纯度及高活性。
石灰石-石膏湿法:可外购石灰石粉或块料,石灰石块料价格便宜,直接购粉则可大幅度降低投资及耗电量,但相应增加了采购成本。
4.1.11排烟温度
干法RCFB:脱硫率80%左右时为70~90℃,脱硫率提高到95%后要降55~70℃。
石灰石-石膏湿法:GGH出口一般为大于80℃。
4.1.12副产品输送利用
干法RCFB:目前仅适宜用于填坑、铺路,应用价值低。用于其他场合的应用方法还未研究,而且还将是很长一段过程。灰易产生粘结,既影响输送,也影响装置的运行。当脱硫渣排入灰场时,将影响粉煤灰的综合利用。在抛弃过程中需要考虑增设合适的储运设施,同时也增加一定的运输和储存成本。
石灰石-石膏湿法:脱硫石膏质量优于天然石膏,可综合利用,应用价值较高。如采用抛弃法,可节省部分投资,输送也不会有问题。
4.1.13占地面积
干法RCFB:在大容量机组考虑采用1炉1塔时占地较小。
石灰石-石膏湿法:较大。
4.2经济比较
以下以某电厂2×300MW机组烟气脱硫装置为例,脱硫项目建设期按1年计算,运营期按20年计算,采用总费用法对干、湿法方案进行经济比较,总费用低的方案较优。
从“经济比较成果表”可以看出,湿法脱硫方案的总费用略低于干法脱硫方案。因此,从经济比较的角度来看,湿法方案优于干法方案。
5结论和建议
5.1结论
综上所述,湿法与干法相比,技术更加成熟,运行经验更加丰富,脱硫剂供应有保证,脱硫副产品利用好,系统供应商较多;经营费用小,初始投资高,总成本费用较低,全系统本厂占地面积较大。
每个电厂有各自的实际情况,在FGD装置设计上也有不同。方案比选中不仅要考虑干法、湿法的技术因数,还要考虑各种实际存在的问题:如脱硫剂的供应、废渣的处理、对环境变化的适应、***府的规划等。
目前干法烟尘排放量要大于100mg/Nm3,湿法小于50mg/Nm3,均小于现行环保排放标准200mg/Nm3的要求。如果环保***策要求进一步提高脱硫效率,降低出口允许烟尘排放浓度,湿法也比较容易调整改造,而干法效率已到高限,难以实施进一步改造。
5.2建议
脱硫工艺论文第3篇
1.1脱硫技术的现状
目前国内一般采用干法脱硫和湿法脱硫两种办法对天然气进行脱硫工艺。湿法脱硫工艺一般用于脱硫大量轻烃、含硫量高、对脱硫精确度要求不高的工艺。它是两种基本流程相似的化学和物理脱硫法,该操作流程比较复杂,依靠脱硫剂中的吸收剂与天然气中的硫发生反应,整个工艺过程使用装备较多,消耗也多,轻烃经过再生塔时会产生吸收剂进行再利用,但需在发生反应的同时一直补充脱硫剂。中间还要处理反应产生的废液,湿法脱硫工艺并不属于精准脱硫方式。国内对轻烃脱硫产品的要求是含硫量每立方米要低于5mg,国际对它的要求标准是含硫量在每立方米1mg左右。为了可以满足相关要求标准我们可以采用干法脱硫,这种方法能源消耗少、需求资金设备少、操作方法流程简单易操作,使用的固体脱硫剂将硫化物附着在塔内进行反应脱硫,需要两塔或者三塔串联完成,用这种方法进行脱硫工艺不会产生废物,精确度很高。
1.2确定工艺路线
轻烃原料中含有的硫元素会造成硫含量在丙烷和丁烷中超标,要想减少它们的含硫量就应该在进气装置前安装一套脱硫设备,这种先脱硫再加工的方法操作起来比较简单方便还符合要求,很适合推广使用。在脱硫剂没有饱和的情况下有比较长使用寿命,一般有2到3年的使用期。根据实验考察计算发现,脱硫工艺的温度应该保持在25℃上下,脱硫后的原料含硫量要在每立方米0.1mg以下。原料脱硫的过程是原料先经过低点排出原液气使之进入加热器,由导热油在辅助的情况下加热到25℃,原料气和氧气混合后会流入脱硫塔,控制温度在25℃的情况下严格控制好空气补给量,脱硫后原料气经过在加工过滤净化,最后进行气体处理。
1.3选择脱硫剂
有些脱硫剂中添加了活性炭,在催化剂作用下反应时起到了吸附作用。选择脱硫剂时要尽量选择有点多脱硫率高的脱硫剂,做到能量消耗低、反应温度低、精准度较高,便于使用的同时还要可以简单操作和更换,而且还要有先进的技术水平。
1.4确定脱硫装置参数
一般而言,对工艺要求比较低的原液气处理选择干法脱硫技术,处理量要求也不高,日处理量不超过240万立方米由于原液气压力比较低,为了保证下游装置的正常工作,脱硫塔的压降必须控制在0.05MPa之下,而要调整脱硫剂的孔隙度在30%和35%的范围内,为了孔隙度调整之后的含硫量不超标,还要设计一个保驾塔,依据前面的脱硫效果,经过分析结果决定是否要投入使用,来确保脱硫精度,填充床层的高径比为10∶6。而为了验证脱硫剂的反应温度的最佳值,通过试验模拟得出不同的温度下硫化物的转化率,当温度达到5℃以上,原液气中的H2S已经基本转化完成了;温度达到17℃时,原液气中的有机硫转化率就可到80%以上,温度达到26℃时,有机硫的转化率接近100%,因而反应的最佳温度一般25℃左右。
2轻烃产品的利用
近年来由于化工业的大力发展,很多进口的丙烷、丁烷逐渐增多,我国的轻烃原料也呈现出了多样化的特点,轻烃通过加工出来的产品应用在很多行业,不断提升着轻烃产品的使用价值。轻烃加工后可以用作优质的化工溶剂,在化工中起到裂解材料的使用;轻烃经过脱硫后可以当做液化石油气供人们使用,也可以用在汽车的火花塞中,这样可会减少汽车内积碳的含量,不用经常清洗;因为轻烃脱硫后不会含有烯烃元素性能,比较稳定,还没有臭味,可以用它来制作很多雾化产品,例如杀虫剂、发胶摩斯等;现在的人们环保意识不断增强,很多轻烃脱硫后人们把它用于保护臭氧层代替氟利昂的使用。
3结语
脱硫工艺论文第4篇
【关键词】焦煤入炉前脱硫;碳化过程加氢脱硫;回收煤气脱硫
1.焦煤入焦炉前脱硫
1.1无机硫的脱除
无机硫脱除一般以物理法为主,它主要以硫铁矿和硫酸盐的形态存在于煤的夹层中,以地质结合为主,由于国内原煤洗选工艺一般以脱灰为主,原煤中无机硫的脱除率一般在40%左右,如将原煤洗选粒度降至一定程度,硫铁矿的脱除率可大幅提高,因此只要将部分洗煤设备和工艺加以改进,即可有效的提高无机硫的脱除效率,目前,国内外已有成熟的设备,通过优化洗选工艺,脱除原煤中的硫铁矿。它工艺可靠,脱除效率高、投资省、运行成本低,已得到洗煤行业的高度重视,一些专业的洗煤厂商已将脱除无机硫做为设计重点,主要采用重力法、浮选法、磁选法等几种工艺。
重力法是按煤和硫铁矿比重差异进行脱硫,这是目前焦煤脱硫的主要手段,使用重介质旋流器可以实现低密度,高精度的分选,分选粒度下限可以达到 0.1-0.2mm,能有效地排除未充分解离的中间密度的硫铁矿与煤的连生体,而获得较高回收率的低灰低硫精煤,高密度的硫铁矿使用重介工艺可使煤与硫铁矿进行有效的分离,且脱除率较高。
浮选法主要处理重介质分选粒度下限微未级的细微粒煤,上限可以达到0.3mm 以上,弥补了重介质分选的粒度范围,在该粒度状况下,煤与硫铁矿连生体已基本被分离,只要选用合适的浮选制,利用颗粒表面润湿差异和空气微泡有条件吸附而形成的表面张力就能有效的分离出硫铁矿和灰分,微泡浮选柱具有明显的去硫除灰能力,而且对微末级的极细粒煤效果非常好。
磁选法主要利用硫铁矿自身的磁性对其进行脱硫,它是根据煤效组份与硫铁矿的磁性差异进行脱硫。它是浮选法的工艺补充,主要针对 0.3mm 以下的泥煤中的硫铁矿,但因硫铁矿磁性较小,虽然显顺磁性的,需专用的磁选机和较复杂的流程,因此国内洗选厂家选用有限。
1.2 有机硫脱除
有机硫的脱除是一个复杂的氧化还原过程,一般的工艺条件很难有效的脱除,目前,理论上论证、试验较多的工艺有:氧化法、硝化法、氯解法、热解法,碱液法等多种化学脱硫方法,且综合脱硫效率能达到 20-60%。如:利用浓氨水渗透打断与煤分子的有机结合健,再经过洗选分离出无机硫;利用热碱液浸泡焦煤8个小时以上(需加热进行恒温),生成硫代硫酸盐再分离;在密封容器中和一定的高温、高压条件下,加入空气氧化煤中有机硫;用NO2有选择性的氧化煤中的硫分,并以热碱液处理后水洗;氯乙稀液萃取煤中硫组份;高温加氢法等。虽然化学脱硫方法较多,且脱硫效率也较高。但装置投资大,生产费用高,处理煤量规模小,易造成二次污染,生产条件要求高等弊端,很难规模化生产,只能用于超净化煤的处理。但有机硫含量高的原煤,一般含灰量较低,价格也偏低,可做为煤焦的配煤,控制焦炭中的总硫和总灰份。
1.3 生物脱硫
煤的生物脱硫工艺比较简单,是所有脱硫工艺中投资和运行费用最低的一种方法,它利用某一种针对性强的好氧菌的氧化特性,将煤中的硫铁矿,硫酸盐及煤分子中的噻吩硫氧化成离子状态、单质硫(生成硫酸)达到脱硫的目的,且对煤质不产生影响。
2.炭化过程脱硫
煤在炭化过程脱硫,是提高焦炭质量的一项重要的措施,目前有二种方法,一种是传统的缚硫焦,使用钙基和钡基缚硫剂使焦炭中的硫份降低 0.1~0.2 个百分点,效果明显,但缺陷是增加了焦炭中的灰份,需使用灰份较低的煤,在焦煤资源日趋紧张的今天,该方法已基本被淘汰。另一种方法煤是在炭化室结焦的过程中、适时、适量、适温的通入氢气或焦炉煤气(含氢55%左右),氢与硫铁矿发生还原反应,生成 H2S 和 Fe,与噻吩类硫化物反应生成碳氢化合物和硫化氢。根据可行性研究表明,在新建焦炉设计时增加一个加氢(焦炉煤气)系统是可行的,但实际应用时的脱硫效果还需进一步验证,要实现煤在炭化过程脱硫的可行性,需具备以下几方面条件。
2.1参与反应的氢气量(焦炉煤气)
它取决于焦炭中总硫的控制,经净化的回炉煤气量应占总量的20%。这部分煤气取至回炉煤气预热器,温度 80℃左右。煤气压力1500~2000pa 即可满足工艺条件。
2.2回炉煤气温度
因冷煤气可使炉温降低,延长结焦时间,因此需要利用焦炉蓄热室设计一套加热系统,将煤气加热至500度左右,该系统如在已建焦炉改造,难度很大,但新建焦炉就比较容易的实现。
2.3 选择合适的炭化室温度通入煤气脱硫
根据理论计算和试验结果显示,氢气脱硫最佳炭化室温度为 900 度左右,即焦饼中心出现孔隙时的结焦后期,挥发份逸出 80~85%时,焦饼中S与H2反应的推动力最大。
2.4氢化脱硫反应时间控制
反应时间的控制,取决于炉型,煤质,氢气的温度、压力和量,顶装煤焦炉,焦饼结焦中后期,炉墙还承受焦饼一定的侧压力,阻力较大,后期收缩后焦饼孔、隙较大,有利于 H2S 反应。
3.煤气脱硫
煤气脱硫成熟的工艺较多,下面作一简单的技术分析:
3.1以氨为碱源的 HPF 脱硫工艺的特点是脱硫效率高,脱硫后的煤气含硫量小于 200mg,但有难处理的盐类废液,易造成二次污染;生产尾气含氨量高也易造成二次污染;脱硫产品硫磺的纯度低,质量差,脱硫成本高;由于再生塔排出尾气和废液带氨量较大,可使氨的损失达15%,不但污染了环境,也浪费了氨源;一次性投资大,设备能耗高,生产成本增加,因此新设计的脱硫装置装重点考虑节能减排。
3.2 AS 法脱硫工艺:该工艺虽然脱硫过程不产生污染且硫磺纯度高,但脱硫效率较低,煤气含硫不易达标,且设备材料防腐要求高,生产成本高,推广使用受到一定限制。
3.3 真空碳酸钾脱硫工艺:该工艺特点是元素硫质量好,效益好于其它工艺,但需外购碱源、脱硫效率低,脱硫后煤气含硫较高,另外该脱硫装置放在洗苯塔后,故存在一定的污染和腐蚀问题。
3.4 FAS 氨为碱源湿式吸收工艺:该工艺是在 HPF 法基础上优化创新的一种工艺,该工艺增大了脱硫塔传质面积,脱硫效率高;在脱酸前增加脱氰装置,提高了脱氰效率;装置回收的硫磺纯度高,系统无废液产生,工艺比较先进,但设备较多,一次性投资偏大。
综合煤气脱硫工艺,虽然脱硫效率、二次污染、一次性投资、生产成本、工艺复杂程度有差异,但脱硫效率都能达到或接近国家指标要求,因此,处理的工艺难度要小于固态脱硫。
4.结论
随着大型钢铁企业对焦炭质量要求不断提高和低硫炼焦煤资源储量的日趋减少,寻求高硫煤炼焦的有效应用工艺的确定还有许多技术问题需要解决,它需要相关行业的共同努力,以便加快新的、高效的脱硫工艺工业化。
【参考文献】
[1]张晓林.焦炉煤气脱硫方法的新进展[J].燃料与化工,2011,(05).
脱硫工艺论文第5篇
关键词: 焦煤入炉前脱硫;碳化过程加氢脱硫;回收煤气脱硫
中***分类号:TF704.3 文献标识码:A 文章编号:1006-4311(2012)19-0047-02
0 引言
我国煤炭资源虽然丰富,但焦煤资源只占查明资源储量的27%,可采储量只有700亿吨。目前国内焦炉生产规模已达7亿吨,2012年焦炭产量超过4亿吨,耗原煤8亿吨左右。根据国内主要矿区炼焦用原煤工业分析看,在炼焦煤采出量(占可储量的50%)的原煤中,硫份超过1.5%的炼焦用煤超过25%,因为配煤中硫含量高,造成焦炭质量下降,生产成本上升,从高硫炼焦煤矿区煤层原煤含量分布特征分析,国内炼焦煤硫份以年轻的低变质的气煤和1/3焦煤最低(1%以下),而变质程度较高的年老气煤、肥煤和焦煤含硫份相对较高,(大于1%)从成份硫分布比例分析,绝大多数矿区的高硫煤的成份硫都以硫铁矿(Sp,d)为主,一般占全硫(St,d)的50%—80%。有机硫(So,d)一般占全硫的15%-40%,通常以硫铁矿为主的煤经洗选后精煤硫份会有较大幅度降低。以有机硫为主的高硫煤,洗选后精煤硫份比原煤更高。有机硫是煤分子的一部分,主要以脂基硫、芳基硫、噻吩类硫分布于煤分子中,因此脱除难度很大。
焦煤中的硫份只有30%-50%经裂解进入煤气中,大部分硫残留在焦炭中,根据硫份在焦炭中的位置,可将脱硫技术分为入炉前脱硫,焦化过程脱硫和煤气脱硫三个阶段过程,本文分别进行技术分析和论述。
1 焦煤入焦炉前脱硫
1.1 无机硫的脱除 无机硫脱除一般以物理法为主,它主要以硫铁矿和硫酸盐的形态存在于煤的夹层中,以地质结合为主,由于国内原煤洗选工艺一般以脱灰为主,原煤中无机硫的脱除率一般在40%左右,如将原煤洗选粒度降至一定程度,硫铁矿的脱除率可大幅提高,因此只要将部分洗煤设备和工艺加以改进,即可有效的提高无机硫的脱除效率,目前,国内外已有成熟的设备,通过优化洗选工艺,脱除原煤中的硫铁矿。它工艺可靠,脱除效率高、投资省、运行成本低,已得到洗煤行业的高度重视,一些专业的洗煤厂商已将脱除无机硫做为设计重点,主要采用重力法、浮选法、磁选法等几种工艺。
重力法是按煤和硫铁矿比重差异进行脱硫,这是目前焦煤脱硫的主要手段,使用重介质旋流器可以实现低密度,高精度的分选,分选粒度下限可以达到0.1-0.2mm,能有效地排除未充分解离的中间密度的硫铁矿与煤的连生体,而获得较高回收率的低灰低硫精煤,高密度的硫铁矿使用重介工艺可使煤与硫铁矿进行有效的分离,且脱除率较高。
浮选法主要处理重介质分选粒度下限微未级的细微粒煤,上限可以达到0.3mm以上,弥补了重介质分选的粒度范围,在该粒度状况下,煤与硫铁矿连生体已基本被分离,只要选用合适的浮选制,利用颗粒表面润湿差异和空气微泡有条件吸附而形成的表面张力就能有效的分离出硫铁矿和灰分,微泡浮选柱具有明显的去硫除灰能力,而且对微末级的极细粒煤效果非常好。
磁选法主要利用硫铁矿自身的磁性对其进行脱硫,它是根据煤效组份与硫铁矿的磁性差异进行脱硫。它是浮选法的工艺补充,主要针对0.3mm以下的泥煤中的硫铁矿,但因硫铁矿磁性较小,虽然显顺磁性的,需专用的磁选机和较复杂的流程,因此国内洗选厂家选用有限。
1.2 有机硫脱除 有机硫的脱除是一个复杂的氧化还原过程,一般的工艺条件很难有效的脱除,目前,理论上论证、试验较多的工艺有:氧化法、硝化法、氯解法、热解法,碱液法等多种化学脱硫方法,且综合脱硫效率能达到20-60%。如:利用浓氨水渗透打断与煤分子的有机结合健,再经过洗选分离出无机硫;利用热碱液浸泡焦煤8个小时以上(需加热进行恒温),生成硫代硫酸盐再分离;在密封容器中和一定的高温、高压条件下,加入空气氧化煤中有机硫;用NO2有选择性的氧化煤中的硫分,并以热碱液(Na2Co3和Ca(OH)2水溶液)处理后水洗;氯乙稀液萃取煤中硫组份;高温加氢法等。虽然化学脱硫方法较多,且脱硫效率也较高。但装置投资大,生产费用高,处理煤量规模小,易造成二次污染,生产条件要求高等弊端,很难规模化生产,只能用于超净化煤的处理。但有机硫含量高的原煤,一般含灰量较低,价格也偏低,可做为煤焦的配煤,控制焦炭中的总硫和总灰份。
1.3 生物脱硫:煤的生物脱硫工艺比较简单,是所有脱硫工艺中投资和运行费用最低的一种方法,它利用某一种针对性强的好氧菌的氧化特性,将煤中的硫铁矿,硫酸盐及煤分子中的噻吩硫氧化成离子状态、单质硫(生成硫酸)达到脱硫的目的,且对煤质不产生影响。由于脱硫菌针对性强,只要选择合适的菌种也可有效的脱除煤分子中的有机硫。该工艺虽然国内外有不少研究成果,但目前还停留在中试阶段,因菌种针对性强,培育出的菌种受到不同的外部条件影响,效果差异较大。最主要的是脱除效率较低,在美国专业研究部门的放大试验显示,要脱除煤中50%的硫铁矿,需200天以上的时间,环境温度对生物脱硫效率影响较大。同时浸出废液对环境影响严重。因此该方法目前推广使用价值有限。
脱硫工艺论文第6篇
关键词:石灰石 氨水(或液氨) 电石渣
一、前言
烟气脱硫(FlueGasDesulfurization,FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染的最为有效的和主要的技术手段。
目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技术,但是,其基本原理都是以一种碱性物质作为SO2的吸收剂,即脱硫剂。按脱硫剂的种类划分,烟气脱硫技术可分为如下几种方法。
1.以CaCO3(石灰石)为基础的钙法;
2.以MgO为基础的镁法;
3.以Na2SO3为基础的钙法;
4.以NH3为基础的氨法;
5.以有机碱为基础的有机碱法。
世界上普遍使用的商业化技术是钙法,所占比例在90以上。 烟气脱硫装置相对占有率最大的国家是日本。日本的燃煤和燃油锅炉基本上都装有烟气脱硫装置。众所周知,日本的煤资源和石油资源都很缺乏,也没有石膏资源,而其石灰石资源却极为丰富。因此,FGD的石膏产品在日本得到广泛的应用。这便是钙法在日本得到广泛应用的原因。因此,其他发达国家的火电厂锅炉烟气脱硫装置多数是由日本技术商提供的。
二、脱硫工艺的选择
在环境约束条件下,如何结合火电厂的内外部资源条件,科学合理地选择切合实际的脱硫工艺显得十分重要,它直接关系到脱硫系统乃至机组的安全可靠性和经济运行。
1.脱硫条件
1.1机组条件
新机组或老机组、机组容量、剩余寿命、燃煤硫分、漏风率和含尘量等参数必须设计准确。若设计参数不正确,将会出现以下问题:(1)机组漏风,烟气量大,脱硫投资增加;(2)实际燃煤含硫量远超过设计值,不能达到100%烟气脱硫;(3)烟气含尘量过高,导致石膏品质不合格。
1.2资源条件
脱硫吸收剂的来源直接影响到脱硫工艺的选择。另外,脱硫用水的水源水质作为脱硫吸收剂的载体也起着重要作用。因此,吸收剂及脱硫用水的来源也直接影响到脱硫工艺的选择。
1.3建设条件
包括场地和施工条件、施工周期等。脱硫装置的布置空间是脱硫工艺选择的一个重要条件,不同的脱硫工艺布置空间要求不同,只有充分满足其最小布置空间,该脱硫工艺才具备成立的条件。
2.技术比较
2.1脱硫效率
选择烟气脱硫工艺时,首先考虑的因素是SO2排放的控制水平,即环保法规、标准等对脱硫项目削减SO2排放量的具体要求。有了SO2削减量,进而计算脱硫项目最低的脱硫效率。
2.2钙硫比
钙硫比是表示达到一定脱硫效率时所需钙基吸收剂的过量程度,是影响脱硫效率的重要因素。一般来说,钙硫比越高,脱硫效率越高,同时脱硫工艺费用也越高。
2.3对机组影响和生产运行的适应性
2.3.1对锅炉和烟气系统的影响,不同工艺脱硫设备对锅炉和烟气系统影响各不相同,如湿法工艺安装在除尘器的下游,对锅炉和除尘器影响最小,但对出口烟道和烟囱会产生腐蚀。
2.3.2对机组运行的适应性,对于调峰机组,负荷变动较大,选择脱硫工艺时,脱硫系统必须能适应经常起停的状况,能耐受经常性的热冲击;有良好的负荷跟踪特性;脱硫系统停运后的维护工作量要小。
3.经济评价
脱硫装置的投资费用与经济社会效益是影响脱硫工艺选择的主要因素之一。经济评价应考虑主要因素:投资费用、年运行费用及经济效益。在技术性能相当或相差不多的条件下,经济性好的脱硫工艺为首选。
4.环境评估
脱硫工程属于环保工程,但作为一个建设项目也同样存在环境影响,如考虑不够周全,则会导致二次污染。潜在的环境影响主要有:脱硫吸收剂制备系统产生的扬尘和噪声;脱硫副产品处置,包括副产品抛弃堆存时对环境的影响;脱硫废水对水体的影响;脱硫后净烟气的抬升影响。
三、石灰石工艺原理
是用石灰或石灰石浆液吸收烟气的SO2,分为吸收和氧化两个阶段。先吸收生成亚硫酸钙,然后将亚硫酸钙氧化成硫酸钙即石膏湿式钙法,通常有抛弃法、回收法和双循环湿式钙法等,抛弃法和回收法区别在脱硫产物是否再利用。其中回收法的脱硫产物为二水石膏(CaSO4.2H2O),此法以日本应用最多。石膏的主要用途是作为建筑材料,高质量石膏作为石膏板材的原料。我国重庆珞磺电厂引进日本三菱公司的技术就是这种方法。但是,目前再我国脱硫石膏很难找到大规模的用途。对于湿法脱硫产物,值得注意的是,脱硫石膏应用途径可以参考磷肥工业中的石膏制硫酸过程。在该过程中,石膏被C(无烟煤或焦碳)还原SO2和CaO。SO2(以5左右浓度的空气混合物形式存在)可进一步被转化为硫酸。CaO则循环到脱硫吸收装置作为脱硫剂循环使用。因此,理论上,这个过程回收了烟气中的SO2生产工业浓硫酸[98(质量)],不消耗脱硫剂。而其还原剂煤在电厂也是十分丰富和方便。这个过程对高硫煤发电厂具有一定价值。
四、氨法工艺原理
以水溶液中的SO2和NH3的反应为基础:
1. SO2+H2O+xNH3 = (NH4) xH2-XSO3
得到亚硫酸铵中间产品,亚硫酸铵再进行氧化:
2.(NH4)XH2-XSO3+1/2O2 +(2-x)NH3=(NH4)2SO4
在美国,镁法和钠法得到了较深入的研究,但实践证明,它们都不如钙法。 在我国,氨法具有很好的发展土壤。我国是一个粮食大国,也是化肥大国。氮肥以合成氨计,我国的需求量目前达到33Mt/a,其中近45是由小型氮肥厂生产的,而且这些小氮肥厂的分布很广,每个县基本上都有氮肥厂。因此,每个电厂周围100km内,都能找到可以提供合成氨的氮肥厂,SO2吸收剂的供应很丰富。更有意义的是,氨法的产品本身就是化肥,就有很好的应用价值。氨法脱硫是回收法,副产高附加值的产品,可使氨增值,所以氨法脱硫的运行费用小,煤中含硫量愈高,运行费用愈低。
五、镁法脱硫工艺原理
镁法脱硫是采用镁矿石(主要成份为碳酸镁) 经过煅烧生成的氧化镁作为脱硫吸收剂,将氧化镁通过浆液制备系统制成氢氧化镁过饱和液,在脱硫吸收塔内与烟气充分接触,烟气中的二氧化硫与浆液中的氢氧化镁进行化学反应生成亚硫酸镁,从吸收塔排出的亚硫酸镁浆液经脱水处理后可供综合利用。由于吸收剂的活性较高,镁法脱硫采用较小容量的吸收塔和较小容量的浆液循环泵就可达到要求的脱硫效率,所以相对减少了设备的初期投资和运行费用。此外,本方法最突出的特点是脱硫剂可以循环利用,符合循环经济要求。采用脱硫副产品
脱硫工艺论文第7篇
关键词:烟气;脱硫;技术
Abstract: through to the domestic common typical flue gas desulfurization technology analysis, for flue gas desulfurization process provide effective technical solutions.
Keywords: smoke; The desulfurization; technology
中***分类号:TU834.6+34 文献标识码:A文章编号:
我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的 低费用、低耗本的脱硫技术。
烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。)_ P:S"F-V*B,e4J:b省略随着我国环保产业在烟气脱硫技术方面取得的巨大进步,烟气的脱硫已形成了许多成熟工艺,常见的脱硫工艺主要包括:
*`5z A2I X,M+Y*e,C%m _'h,L5|-a"r#m6i分享信息,提高技术水平,优化工程质量石灰石―石膏湿法烟气脱硫工艺;
简易石灰石―石膏湿法烟气脱硫工艺; 分享信
旋转喷雾半干法烟气脱硫工艺(LSD法); 能源环保论坛0z'T
海水烟气脱硫工艺; 能源环保论坛0C.u1A%W7
炉内喷钙加尾部增湿活化工艺(LIFAC法);
'T8{2e7V3m:J;o能源环保论坛电子束烟气脱硫工艺(EBA); 能源环保论坛 P$v+l1|!G%`(
循环流化床锅炉脱硫工艺(锅炉CFB);
一、石灰石―石膏湿法烟气脱硫工艺
石灰石(石灰)―石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰作为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。脱硫后的烟气依次经过除雾器除去雾滴,加热器加热升温后,由增压风机经烟囱排放,脱硫渣石膏可以综合利用。
二、简易石灰石―石膏湿法烟气脱硫工艺
简易石灰石―石膏湿法烟气脱硫工艺的脱硫原理和普通湿法脱硫基本相同,只是吸收塔内部结构简单(采用空塔或采用水平布置),省略或简化换热器,因而和普通的湿法相比,具有占地面积小、设备成本低、运行及维护费用少等优点。
我国太原第一热电厂引进了日立高速平流湿法脱硫工艺,处理气量60万m3/h,为来自300MW机组的三分之二烟气量,其入口SO2浓度为2000ppm,吸收剂采用石灰石,系统可达80-90%的脱硫效率,自装置投入运行以来,系统可靠性较好。
三、旋转喷雾半干法烟气脱硫工艺
旋转喷雾半干法烟气脱硫工艺也是目前应用较广的一种烟气脱硫技术,其工艺原理是以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰***,消石灰***由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的二氧化硫发生化学反应生成CaSO3,烟气中的二氧化硫被脱除。7t&~ _6g8t能源环保论坛与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来,可以在筑路中用于路基。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分脱硫灰加入制浆系统进行循环利用。
四、海水烟气脱硫工艺
海水烟气脱硫工艺是利用海水的碱度达到脱除烟气中的二氧化硫的一种脱硫方法。烟气经除尘器除尘后,由增压风机送入气―气换热器中的热侧降温,然后送入吸收塔。在脱硫吸收塔内,与来自循环冷却系统的大量海水接触,烟气中的二氧化硫被吸收反应脱除。脱除二氧化硫后的烟气经换热器升温,由烟道排放。
五、炉内喷钙加尾部增湿活化脱硫工艺
炉内喷钙加尾部增湿活化工艺(简称LIFAC工艺)是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850-1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,收到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应内,增湿水以雾状喷入,与未反应的氧化钙接触生成Ca(OH)2进而与烟气中的二氧化硫反应,进而再次脱除二氧化硫。当Ca/S为2.5及以上时,系统脱硫率可达到65%-80%。
)v-L+v6E#w$E.g)W能源环保论坛烟气脱硫后,由于增湿水的加入烟气温度下降(只有55-60℃,一般控制出口烟气温度高于露点10-15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。由于脱硫过程对吸收剂的利用率很低,脱硫副产物是以不稳定的亚硫酸钙为主的脱硫灰,副产物的综合利用受到一定的影响。
六、电子束烟气脱硫工艺(EBA法)
电子束烟气脱硫工艺是一种物理方法和化学方法相结合的高新技术。本工艺的流程是由排烟预除尘、烟气冷却、氨的冲入、电子束照射和副产品捕集工序组成。锅炉所排出的烟气,经过集尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生任何废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨气、压缩空气和软水混合喷入,加入氨的量取决于SOx和NOx浓度,经过电子束照射后,SOx和NOx在自由基的作用下生成中间物硫酸和硝酸。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状颗粒硫酸铵和硝酸铵的混合体。
七、循环流化床锅炉脱硫工艺(锅炉CFB)
%y8w3c'Y#x$M#s8f0o Y能源环保论坛循环流化床锅炉脱硫工艺是近年来迅速发展起来的一种新型煤燃烧脱硫技术。其原理是燃料和作为吸收剂的石灰石粉送入燃烧室中部送入,气流使燃料颗粒、石灰石粉和灰一起在循环流化床强烈扰动并充满燃烧室,石灰石粉在燃烧室内裂解成氧化钙,氧化钙和二氧化硫结合成亚硫酸钙,锅炉燃烧室温度控制在850℃左右,以实现反应最佳。
以上,是近年来在我国广泛应用和推广的脱硫技术。上述脱硫技术,在国内各大电厂和大型燃煤设备的烟气脱硫工程中,均有应用。从各类工艺的运行情况来看,都实现了较高的脱硫效率,环境特性良好。对于产生和排放二氧化硫的设备和设施,在设计脱硫措施时,可依据自身特点和环境特性,因地制宜的选择适宜的脱硫工艺。
参考文献:
[1] 国家环保总局,《火电厂烟气脱硫工程技术规范 石灰石/石灰-石膏法》(HJ/T 179-2005),2005.10(参考页码:1-20)
[2] 国家环保总局,《火电厂烟气脱硫工程技术规范 烟气循环流化床法》(HJ/T 178-2005),2005.10(参考页码:1-20)