【摘 要】均衡概念是构成整个博弈论的基石,对博弈论均衡概念的透彻理解将对博弈论的学习打下良好的基础。本文首先将博弈划分为不同的类型,并对主要的均衡概念进行了数学描述,最后对不同的均衡概念进行了比较。
【关键词】博弈论;纳什均衡;重复博弈
博弈论在现代经济学中占据着相当重要的位置,在微观经济学的本科教学环节中,如果将博弈论这一部分排除在外,那么教学内容是不完整的,并且和现代微观经济学的发展严重脱节。但是由于课时以及学生接受能力的限制,对博弈论的内容进行全面深入地讲解难以做到,因此,将博弈论的基本概念和方法清晰地向本科学生进行展示就显得十分重要了。在博弈论的基本概念当中,最重要的当属博弈均衡的概念,这些概念的掌握有助于学生把握博弈论的整体框架,并对博弈论的后续学习至关重要。因此,本文将主要的博弈均衡概念进行分类和表述, 并对不同的博弈概念进行比较,以期对博弈论的教学有所助益。
一、博弈的主要类型
博弈构成的基本要素包括:1、参与人(1~N);2、各个参与人各自可选择的行动集合Ai={ai};3、参与人i的策略Si,给定信息集,该策略决定在博弈的每一阶段他选择的行动;4、参与人的收益Ui (S1,S2…SN)。依据不同的分类标准,博弈可以被划分为不同的类型。
1、静态博弈、动态博弈和重复博弈
博弈各方同时选择策略的博弈称为静态博弈,如猜硬币、投标等,静态博弈一般可以用支付矩阵来表达。动态博弈是指博弈各方按照一定的先后次序进行策略的选择,典型的例子如对弈,动态博弈一般可以用“博弈树”来表达。Game Theory 中文翻译为博弈论也是分别用静态和动态博弈的典型代表和对弈的简称而来。重复博弈是指同一个博弈(静态或动态)反复进行所构成的博弈过程,如体育比赛中的多局赛制等。
2、完全信息和不完全信息博弈
完全信息博弈是指每个参与人都了解其他参与人的收益函数的博弈,不完全信息博弈是指参与人并不完全了解其他参与人收益函数的博弈。
3、完美信息和不完美信息博弈
在动态博弈中,一参与人完全了解在自己行为之前的博弈进程,则称此参与人为有完美信息的参与人,如果博弈中所有的参与人都具有完美信息,则称此动态博弈为完美信息的动态博弈。反之,如果在存在具有不完美信息的参与人(参与人不完全了解自己行为之前的博弈进程),则称此动态博弈为不完美信息动态博弈。
4、合作博弈与非合作博弈
合作博弈允许参与人之间自愿签订有约束力的协议,而非合作博弈的参与人则完全按照个人理性做出策略的选择。在囚徒困境博弈中,非合作博弈得到的结果是双方均坦白,而在合作博弈的情况下则可能得到双方均不坦白的更好的结果。
5、完全理性和有限理性博弈
由具备完全理性的参与各方所进行的博弈称为完全理性博弈。存在有限理性博弈方的博弈称为有限理性博弈。
将上述不同的博弈类型进行组合,可以得到更多类型的博弈,如不完全、完全信息博弈和静、动态博弈可以组合为不完全信息静态博弈、不完全信息动态博弈,完美完全信息博弈、完美不完全信息博弈、不完美不完全信息博弈等。
二、博弈论主要的均衡概念
1、上策均衡
如果一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,那么该策略组合称为一个上策均衡。
2、纳什均衡
(1)纯策略纳什均衡
在博弈G={S1……Sn;u1……un}中,如果由各个博弈方的各一个策略组成的某个策略组合(s1*,……sn*)中,任一博弈方的策略si*,都是对其余博弈方策略组合s-i*的最佳策略,即:
ui(si*, s-i*)≥ui(si, s-i*)对于任一((1~N))都成立,则称(s1*,……sn*)为一个“纯策略纳什均衡” 。
(2)混合策略纳什均衡
混合策略:在博弈G={S1……Sn;u1……un}中,博弈方i的策略空间为Si=(si1……sik),则博弈方i以概率分布(pi1……pik)在其策略空间中进行选择,由此形成的策略称为“混合策略”。其中0≤ pij≤1,且。
将纯策略拓展到混合策略,相应的纳什均衡称为混合策略纳什均衡。事实上,纯策略纳什均衡是混合策略纳什均衡的一个特例。根据纳什定理我们知道,每一个有限博弈(参与人和策略空间均为有限)均存在至少一个混合策略的纳什均衡。
3、防共谋均衡
如果一个博弈的某个策略组合满足以下要求:1、没有任何单个博弈方的偏离了会改变博弈的结果;2、给定选择偏离的博弈方有再次偏离的自由时,没有任何两个博弈方的串通会改变博弈的结果;3、以此类推,直到所有博弈方的串通都不会改变博弈的结果。满足上述要求的均衡策略组合称为“防共谋均衡”。
4、子博弈完美纳什均衡
如果在一个完美信息的动态博弈中,各博弈方的策略构成一个策略组合满足:在整个动态博弈及它所有子博弈中都构成纳什均衡,那么这个策略组合成为该动态博弈的一个“子博弈完美纳什均衡”。
5、颤抖手均衡
如果有限策略博弈的一个纳什均衡满足对每个博弈方i都存在一严格混合策略序列{},使得(1),(2)对于任意正整数m,都是纳什均衡 ,那么,称为一个“颤抖手均衡”。这里的严格混合策略指的是每一个策略都有一个正的被选取的概率。
6、完美贝叶斯均衡
当博弈的一个策略组合及其相应的判断满足以下要求时,称为一个“完美贝叶斯均衡”:
(1)在各个信息集,轮到选择的博弈方必须具有一个关于博弈达到该信息集中每个节点可能性的判断,对非单节点信息集,一个判断就是博弈达到该信息集中各个节点的概率分布 ,对单节点而言,则可理解为判断达到该节点的概率为1。
(2)给定各博弈方的“判断”,他们的策略必须是“序列理性”的。所谓序列理性是指在各个信息集,给定轮到选择博弈方的判断和其他博弈方的后续策略,该博弈方的选择及其后续策略必须使自己的期望收益最大化。
(3)在均衡路径上的信息集初,判断由贝叶斯法则和各博弈方的均衡策略决定。
(4)在不处于均衡路径上的信息集处,判断由贝叶斯法则和各博弈方在此处可能有的均衡策略决定。
7、贝叶斯纳什均衡
在静态贝叶斯博弈中G={A1,…,An;T1,…,Tn;p1, …,pn;u1, …un}中,如果对任意博弈方i和他的每一种可能的类型,Si*(ti)所选择的行动ai都能满足:
max
则称策略组合S*=(S1*,…,Sn*)为G的一个贝叶斯均衡。
8、分离均衡和混合均衡
在不完美信息博弈中,在不同情况下(如拥有商品的类型不同)的完美信息博弈方采取相同行为的市场均衡,称为混合均衡(pooling equilibrium);反之,在不同情况下,完美信息博弈方采取完全不同行为的市场均衡称为分离均衡(seperating equilibrium)。
三、不同均衡概念的比较
上策均衡一般适用于静态博弈,虽然具有很好的稳定性,但是在对博弈进行分析的局限性较强,因为在很多博弈中,并不是所有的参与人都具有上策。在博弈论的各种均衡概念中,纳什均衡处于核心的位置。这是因为:1、纳什均衡是分析博弈的有力工具,可以对大量的博弈结果做出有效地判断,不论是静态还是动态博弈,比如运用纳什均衡可以预测古诺寡头市场上各个厂商的产量,也可以用纳什均衡预测动态的斯塔博格模型中的垄断厂商的产量;2、纳什定理表明了纳什均衡的普遍存在性,这说明了在博弈环境下纳什均衡概念本质上的合理性;3、其他的均衡概念基本上都是由纳什均衡衍生而来,如子博弈完美纳什均衡是将纳什均衡扩展到了每个子博弈上面 ,贝叶斯纳什均衡则是将纳什均衡延伸到了不完全信息博弈当中。纳什均衡的主要问题首先,一个博弈往往存在多个纳什均衡,而运用纳什均衡概念本身无法再对这些均衡进一步分析;其次纳什均衡不能排除博弈策略中所包含的不可信的行为设定,不能解决动态博弈的相机抉择所引起的可信性问题,这导致了纳什均衡的内在不稳定性。
利用逆推归纳法,子博弈完美均衡有效地排除了纳什均衡中不可信的行为设定,从而提高了纳什均衡的稳定性 ,但是逆推归纳法也有严重的弱点。首先,逆推归纳法只能分析明确设定的博弈问题,要求博弈的结构,包括次序、规则、和收益情况都非常清楚,并且各个博弈方了解博弈结构,并相互指导对方了解博弈结构,而现实问题往往与这些要求相去甚远;其次对于阶段比较多,比较复杂的动态博弈,比如对弈,运用逆向归纳法的工作量则变得极为庞大,以至于借助计算机也无法完成;如果遇到两条收益相同的路径,逆推归纳法则无法继续进行下去。逆推归纳法更大的问题是对博弈方的理性要求太高,不仅要求所有博弈方都有高度的理性,不允许博弈方犯任何错误 ,而且要求所有博弈方了解和信任对方的理性,形成“理性的共同知识”,这些条件在现实中同样难以得到满足。
颤抖手均衡的概念在一定程度上解决了子博弈完美均衡和逆推归纳法所遇到的问题。颤抖手均衡考虑到参与人难免会犯一些错误而舍去了由于参与人小概率的偏移而导致整个策略组合不可行的均衡路径,因而具有更高的稳定性 。但是颤抖手均衡本身并没有解决博弈方犯错误的问题,因而也不能保证它的预测就是实际博弈的结果。
贝叶斯纳什均衡和完美贝叶斯均衡是针对不完全和不完美信息博弈问题提出的。造成不完全和不完美信息博弈问题的根本原因是参与各方的信息不对称,而这在现实的经济活动中是普遍存在的,如在保险市场、信贷市场、劳动力市场、柠檬市场、拍卖市场上的情形。分析和解决信息不对称问题对经济活动造成的影响是现代信息经济学的核心问题,因而博弈论成为信息经济学研究的有力工具,现代信息经济学取得的迅猛发展和博弈论广泛运用分不开的。完美贝叶斯均衡是针对不完美信息博弈提出的均衡概念,而贝叶斯纳什均衡是针对不完全信息博弈提出的均衡概念。海萨尼通过引入一个虚拟的自然博弈方将原来的不完全信息博弈问题转换为完全但不完美信息博弈问题,使得动态贝叶斯博弈分析就可以利用完美贝叶斯均衡、分离均衡、混合均衡等概念和方法进行分析。
四、结束语
本文对博弈论中主要的均衡概念进行了描述和比较分析。上策均衡是最直观的博弈均衡概念,但适用范围非常有限。纳什均衡是博弈论的理论基石,从本质上刻画了处于博弈环境(即每个参与人的收益受到整个博弈策略组合的影响)的均衡状态。子博弈完美均衡解决了纳什均衡中不可置信威胁的问题,颤抖手均衡将博弈方犯错误的可能性考虑了进来;而贝叶斯纳什均衡和完美贝叶斯均衡则可以用来处理信息不完美和不完全问题。当然,本文所涉及的博弈均衡概念基本上都是关于非合作和完全理性下博弈(颤抖手均衡虽然考虑了博弈方可能会犯错误的可能性,但这并不意味这博弈方的有限理性)。关于合作博弈和有限理性博弈也发展出了一些均衡概念,如纳什谈判解、夏普利值、进化稳定策略等,另外关于非合作博弈也有一些均衡概念本文没有涉及。随着博弈论理论的不断发展和实际运用的日趋广泛,博弈均衡的概念将会得到不断地精炼和更新。
参考文献:
[1]谢识予,经济博弈论(第三版)[M],复旦大学出版社,2006。
[2]朱.弗登伯格,让.梯若尔,博弈论[M],中国人民大学出版社,2002。
作者简介:
胡小龙(1972-),男,安徽合肥人,安徽大学商学院讲师,河海大学商学院博士研究生,研究方向:创新与创业管理。
转载请注明出处学文网 » 博弈论的主要均衡概念及其比较