【摘要】运用GRNN类神经网络模型数学模型及计算,对新情况下的数据进行内插和外推以推断其属性,可以用于对油井推估、预测、决策、诊断及产能的预估。
【关键词】测试 GRNN类神经网络 应用 探讨
1 类人工神经网络特性
类人工神经网络技术(Artificial Neural Networks)是近年发展起来的一个新的研究领域,反映了人脑功能的若干基本特性,从而使计算机能够模仿人的大脑,具有较强的形象思维能力。
我们目前应用的神经网络多是模糊神经网络,即神经网络与模糊系统的结合,此方法既改进了原有的测试系统的实时性能,又使神经网络学习得到了指导,有利于收敛。但是,此方法单纯地强调了无模型的冗余式学习和模拟,必然造成对计量对象以及计量目标本身的忽略。所以,我们开始尝试使用多层反馈式神经网络,即本文要探讨的GRNN(Generlized Regnssion Neurl Network)神经网络。通过上面的介绍我们可以总结出类人工神经网络具有以下优点非线性映射逼近能力;
(1)对信息的并行分布处理能力;
(2)高强的容错能力;
(3)对学习结果的泛化和自适应能力;
(4)很强的信息综合能力;
(5)信息的优化计算能力;
(6) 便于集成实现和计算模拟
2 建议在石油领域应用类人工神经网络于产量预测
由于上述类神经网络的优点,我们可以知道可以通过监督学习的方法,将专家的故障分析经验传递给神经网络,或用神经网络来建立参数观测系统,从而避免了数学建模的困难,同时,诊断信息还能被用于系统的容错控制。我们利用三层GRNN神经网络来训练网络,可以根据输入到网络的一些样本提供一套权重来进行石油领域的一些预测,在网络训练之后,可以将任何新输入的资料划分为有效产能或无效产能。
虽然神经网络作为一种分类工具似乎比其他方法较具吸引力,在石油领域解决实际问题的应用到目前为止还不多。神经网络(ANN)人工智能方法能处理一系列的信息输入如比率等,并能产生相应的输出,而其运算分析能生成一个成功反映所有输入输出变量相应关系的模式。除此之外,神经网络并不依赖于变量之间必须线性相关或是相互***的假设。变量之间存有微妙联系,如同数据不连续或不完全一样,均可被系统辨识并生成定性评估。简而言之,除了部分不明确的结果之外,神经网络能够在相似点和类似点方面给出有根据的结论,在很大程度上,神经网络方法在油井的判别上有相似的
作用。
3 GRNN类神经网络模型数学模型及计算
3.1 GRNN类神经网络模型数学模型
GRNN(Generlized Regnssion Neurl
Network)是径向基函数神经网络的一种,主要用于函数逼近。GRNN 网络为含1个输入层、1个隐层和1个输出层的3层结构神经网络。隐层传递函数为径向基函数Radbas,输出层为线性函数Purelin:Radbs(x)=exp(-x2),Purelin(x)=x,GRNN网络设置隐层的权重W1为:W1=P’式中为P’输入向量P的转置矩阵:隐层的偏差b1为:b1 =0.8326/ spread
式中spread为径向基函数的展形。输出层的权重W2=T,T为目标向量。
模型设计输入变量为油井的平均压力和平均气温,输出变量为油井的月平均流量。为防止部分神经元达到过饱和,提高网络收敛程度和计算速度,对原始资料应做标准化处理。
3.2 GRNN类神经网络模型数学计算
测试实验目的是了解新的井身结构及管柱所允许的单井产能,并尽可能求取最大产量。设计采用6个油嘴进行回压法测试。回压测试结束后用21.57mm油嘴测试,日产油300.44×104m3,预测生产压差6.056MPa。井下入四支高精度PPC型存储式井下电子压力温度计同时测试。采用MCALLSTER型的直读式电子井下压力温度计,取得了较好效果。
井筒中的动力异常是造成压力异常的主要原因。分隔器密封不严、节流影响、井筒积液、温度变化都会造成井筒中的动力异常。采用变井筒温度模型井的试井数据进行了校正,校正后的平均地层压力上升了约1.2MPa,压力恢复曲线也呈上升趋势。从***1中看出GRNN模拟效果极好,验证结果也基本令人满意。
4 结论和展望
4.1 结论
大庆油田由于多年开采,井下地质条件复杂,使用神经网络模型(如GRNN和BP神经网络)进行监测效果分析,可获得比较好的结果;
在储层四性特征及其四特性关系研究的基础上,以岩心分析数据为标定,测井为工具,GRNN神经网络为方法,基本可以实现储层物性参数的精确预测,且比常规数理方法具有较高的精度,显示出BP神经网络在储层参数预测中具有较为广阔的应用前景。
多层反馈式神经网络具有特定的标准结构和非线性收敛特性。在求解具体问题时,只要把具体确定的能量函数与标准能量函数相对应,就能确定相应的神经网络参数。在合适的能量函数指导下,根据计量目标设计基于反馈式神经网络的系统结构和动态参数,并将基于此网络的参数辩识和计量结合起来,使其具有更强的自适应性。
4.2 展望
(1)如何在矢量控制的框架下补偿参数随时间常数的变化对计量性能带来的影响,是一个重要的研究课题,也是我们以往研究结果的基础上进一步努力的方向;
(2)GRNN神经网络的优越特性必然能在其它的石油领域中得到更广泛的应用,关于此项的研究任务是一项长期的任务。
参考文献
[1] 周继承.人工神经网络-――第六代计算机的实现[M].北京;科学普及出版社,2000
[2] 史忠植.神经计算.北京:电子工业出版社,1999
转载请注明出处学文网 » 油田测试工作中GRNN类神经网络应用探讨