高考平面解析几何全解读

本专题内容主要包含直线的方程、圆的方程,直线与直线、直线与圆、圆与圆的位置关系,椭圆、双曲线和抛物线的定义、标准方程及其几何性质的应用,曲线与方程等知识,是高考考查的重点内容. 平面解析几何知识在历年高考试题中都占有较大的比重,一般选择题、填空题有2题左右,解答题1题,分值大约20分. 选择题、填空题主要考查直线与直线、直线与圆、圆与圆的位置关系,圆锥曲线(椭圆、双曲线和抛物线)的定义、方程和其简单几何性质的应用等重要知识,关注基础知识的应用、运算能力和数形结合思想的渗透.解答题大多数以圆锥曲线(主要是椭圆和抛物线)为载体,综合直线、圆、向量、不等式等知识,并与数学思想方法紧密结合,对坐标法思想、方程思想、数形结合思想、等价转化思想、设而不求思想等进行较为深入的考查,体现了能力立意的命题原则.

1. 考纲解读:

(1)在平面直角坐标系中,结合具体***形,探索确定直线位置的几何要素(两个点、一点和方向).

(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;了解直线的倾斜角的范围;理解直线的斜率和倾斜角之间的关系,能根据直线的倾斜角求出直线的斜率.

(3)根据斜率判定两条直线平行或垂直,根据两条直线平行或垂直的位置关系求直线方程中参数的值.

(4)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式)的特点和适用范围;根据问题的具体条件选择恰当的形式求直线的方程;体会斜截式与一次函数的关系.

(5)了解二元一次方程组的解与两直线交点坐标之间的关系,体会数形结合思想;能用解方程组的方法求两直线的交点坐标.

(6)探索并掌握两点间的距离公式、点到直线的距离公式;会求两条平行直线间的距离.

2. 考场对接:

通过2012年的考点统计可以看出,在高考题中,本节内容主要以选择题、填空题为主要题型,考查两直线的位置关系,属于基础题,难度不大.对直线与方程的考查,还渗透在平面解析几何的解答题中,与其他知识(圆与圆锥曲线)结合出题.

3. 经典例题:

(2012浙江)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )

A. 充分不必要条件

B. 必要不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

失分警示 本题属于基础题,解题时注意判断充分必要条件的步骤,即先验证充分性,再验证必要性,最后综合起来下结论. 在表述的时候要弄清顺序关系,以防发生概念错误.

方法突破 在研究充分和必要条件时,可先求一者的等价条件,再和另一者作比较.

完美答案 当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有■=■,解得a=1或a=-2. 故选A.

4. 命题趋势:

直线的方程、两直线的位置关系、距离问题一直是高考考查的热点问题,单纯考查直线的知识一般在选择题、填空题中出现;直线和其他知识的交汇问题一般出现在解答题中,有一定的难度.

1. 考纲解读:

(1)回顾确定圆的几何要素(圆心、半径,不在同一直线上的三个点等),在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;根据问题的条件,选择恰当的形式求圆的方程;理解圆的一般方程和标准方程之间的关系,会进行互化.

(2)根据给定直线和圆的方程,判断直线与圆的位置关系(相交、相切、相离);根据圆的方程判断圆与圆的位置关系(外离、外切、相交、内切、内含).

(3)用直线和圆的方程解决一些简单的问题.

(4)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想,感受“数”与“形”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用.

(5)通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置;掌握空间两点间的距离公式及其应用.

2. 考场对接:

圆的方程,直线与圆、圆与圆的位置关系是高考考查的重点,在2012年高考试题中,主要在选择题、填空题中考查直线与圆、圆与圆的位置关系,尤其是含参数的问题,考题基本上属于中低档难度的题.

3. 经典例题:

(2012天津)设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围为( )

失分警示 本题属于中档题,考查直线与圆的位置关系,不等式的性质. 注意不要忽略了m,n∈R这个条件,在运用基本不等式时注意其成立的条件,求取值范围时注意不要扩大或缩小范围.

方法突破 由直线与圆相切的条件可以得到一个关于m,n的等式,观察等式的性质,利用基本不等式的形式消除差异,化为关于m+n的不等式,解出其取值范围即可.

完美答案 因为直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,所以■=1,化简得mn=m+n+1. 又当m,n∈R有不等式mn≤■■成立,所以mn=m+n+1≤■,即(m+n)2-4(m+n)-4≥0,解得m+n≤2-2■或m+n≥2+2■. 故选D.

■ (2012江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是_________.

失分警示 本题属于中档偏难题,解答本题时不要被题中的表面意思所迷惑,要透过现象看本质,认真审清题意,将题意中的关系进行合理的转化.

方法突破 数形结合理解题意,将两圆的位置关系化为圆C的圆心到直线y=kx-2的距离的取值范围问题去处理.

完美答案 圆C的方程可化为(x-4)2+y2=1,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则圆C上的点到直线上的点的距离的最小值小于或等于1,则圆心C(4,0)到直线y=kx-2的距离小于等或等于2. 所以■≤2,解得0≤k≤■,故k的最大值是■.

4. 命题趋势:

预计2013年高考仍将在选择题、填空题中考查圆方程的求解,直线与圆、圆与圆的位置关系的判断,特别是含参数的位置关系问题仍将是考查的重点和热点. 而在解答题中,则有可能考查以圆为背景的综合试题,特别是圆与圆锥曲线的整合问题.

1. 考纲解读:

(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.

(2)掌握椭圆的定义和几何***形及标准方程,会求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的标准方程和几何性质处理一些简单的实际问题.

2. 考场对接:

纵观2012年高考数学试题可以看出,选择题、填空题主要考查椭圆的定义、标准方程和几何性质的理解与应用,椭圆的离心率等相关知识,难度中等;解答题主要考查椭圆的标准方程、几何性质的应用,特别地,直线与椭圆的位置关系问题是考查的热点问题,且有一定的难度.

3. 经典例题:

失分警示 结合***形,审清题意,注意三角形哪个角是底角,细心运算,避免发生运算失误.

方法突破 求解圆锥曲线的离心率(或其范围)的关键是根据已知条件寻求一个关于a,b,c的等式(或不等)关系,再结合a,b,c的固有关系消去b,最后得到a,c的等式(或不等)关系,从而求得离心率(或其范围).

4. 命题趋势:

椭圆是命题的热点内容,预计2013年的高考仍将在选择题、填空题中考查椭圆的标准方程、离心率的求解等知识,难度中等;将在解答题中重点考查直线与椭圆的位置关系问题,可能还会出现一些创新题型,如新定义题型、探索性问题、定点定值问题等,此类问题难度较大.同时,会加强椭圆与圆,椭圆与双曲线,椭圆与抛物线等知识的交汇问题的考查力度.

1. 考纲解读:

了解双曲线的定义、***形和标准方程,会求双曲线的标准方程;会用双曲线的标准方程处理一些简单的实际问题;了解双曲线的简单几何性质.

2. 考场对接:

分析2012年高考试题可以看出,双曲线的考题基本上以选择题、填空题为主,主要考查双曲线的定义、方程和简单几何性质的应用,且出现了双曲线和圆、椭圆、抛物线等的整合问题,总体难度中等.

3. 经典例题:

(2012浙江)如***1,F1,F2分别是双曲线C:■-■=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M. 若MF2=F1F2,则C的离心率是( )

失分警示 本题的解题思路并不难得出,但运算量较大,在认真审题的前提下避免发生运算错误,同时注意双曲线的离心率的取值范围,谨防增根.

方法突破 本题考查双曲线的几何性质的应用,离心率的求解,突破的关键是正确求出P,Q两点的坐标(用a,b,c表示),再求出PQ的垂直平分线的方程,进而用a,b,c表示出M的坐标,由MF2=F1F2列出等式,最终化为a,c的关系.

4. 命题趋势:

预计2013年高考仍将在选择题、填空题中考查双曲线的标准方程的求法、定义和几何性质的应用,其中离心率的求解和渐近线问题是考查的热点. 此外,仍会加强将双曲线和其他知识(如圆、椭圆、抛物线)进行交汇出题,题目难度中等偏低.

1. 考纲解读:

(1)掌握抛物线的定义、***形和标准方程,会求抛物线的标准方程;掌握抛物线的简单性质,会用抛物线的标准方程和几何性质处理一些简单的实际问题.

(2)了解方程的曲线与曲线的方程的对应关系;了解求曲线方程的一般步骤,能求一些简单曲线的方程;掌握求直线和圆锥曲线的交点坐标的方法;进一步体会数形结合思想.

2. 考场对接:

透过2012年高考数学试题可以看出,抛物线是考查的热点问题,考题既在选择题、填空题中出现,也在解答题中出现.选择题、填空题重点考查抛物线的标准方程的求法,抛物线的定义和性质的应用,以及抛物线在实际问题中的应用,同时还出现了抛物线与双曲线的交汇问题,难度中等. 解答题重点考查直线与抛物线的位置关系,抛物线与其他知识(如圆、不等式等)的整合问题,且出现了探索性问题,难度较大.而曲线与方程的考查则渗透在以上各大知识板块之中.

3. 经典例题:

(2012安徽)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若AF=3,则AOB的面积为( )

失分警示 本题属于中档题,有一定的思维量,认真审题,找准关系,运算准确,避免发生思维受阻和运算错误.

方法突破 显然AB是抛物线的焦点弦,且已知AF=3,若结合抛物线的定义,则可以求点A的坐标,从而直线AB的方程便可以得到解决,具体见如下的解法一. 本题也可以设角度(见如下的解法二),通过三角关系来表示线段的长度,从而求出三角形的两边及其夹角的正弦值,再求面积.

(1)求抛物线C的方程;

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;

(3)若点M的横坐标为■,直线l:y=kx+■与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当■≤k≤2时,AB2+DE2的最小值.

失分警示 本题难度较大,综合性强,涉及的知识点多,属于直线、圆和抛物线的综合问题,解答时要注意数形结合思想的使用,审清题意. 解答第(1)小题难度不算大,但第(2)小题是一个探索性问题,有较大的运算量,需要扎实的运算功底,第(3)小题将直线、圆和圆锥曲线综合起来,难度较大,需要较强的分析问题和解决问题的能力.

方法突破 第(1)小题结合抛物线的定义以及圆的相关性质可以列出一个关于p的方程,求解即可;第(2)小题可先假设存在点M,利用抛物线的切线斜率和直线MQ的斜率相等列等式求解;第(3)小题的解题目标是将AB2+DE2表示为关于k的函数,从而化为求函数的最值问题去处理,但求两线段的长度需要用到直线与圆锥曲线相交弦长公式AB=■,以及直线与圆的相交弦长公式DE=2■等.

完美答案 (1)x2=2y.

4. 命题趋势:

预计2013年高考中,抛物线仍是考查的一大重点,抛物线的标准方程的求法,抛物线的定义和性质的应用,抛物线与其他知识的交汇问题仍将是命题的热点.此外,定值定点问题、探索性问题、轨迹方程问题、最值问题仍将是试题创新的一个方向.

高考平面解析几何全解读

转载请注明出处学文网 » 高考平面解析几何全解读

学习

化学键教案范文精选

阅读(33)

本文为您介绍化学键教案范文精选,内容包括化学键教案,化学方程式教案。化学键教案篇1教案一

学习

正确理解“二力平衡”

阅读(32)

本文为您介绍正确理解“二力平衡”,内容包括探究二力平衡条件实验,二力平衡总结归纳。一、二力平衡的概念

学习

祖国统一专题

阅读(38)

本文为您介绍祖国统一专题,内容包括祖国统一霸气语录,祖国必将统一。【专题概述】

学习

电力系统中的继电保护

阅读(36)

本文为您介绍电力系统中的继电保护,内容包括电力系统继电保护文字版,电力系统继电保护教程。一、电力系统中继电保护的具体应用

学习

供货协议书

阅读(48)

本文为您介绍供货协议书,内容包括供货协议书最新范本,食堂供货协议书。为大家带来的是供货协议书的范本,希望对大家有帮助。

学习

解读甫志高

阅读(41)

本文为您介绍解读甫志高,内容包括甫志高原型结局,甫志高人物形象。之一

学习

工程竣工报告范文精选

阅读(39)

本文为您介绍工程竣工报告范文精选,内容包括工程竣工总结范文,竣工报告申请表范文。工程竣工报告篇1工程竣工设计评价报告

学习

集合数学教案

阅读(29)

本文为您介绍集合数学教案,内容包括分类集合教案幼儿,三年级数学集合教案。教学目的:知识目标:(1)使学生初步理解集合的概念,知道常用数集的

学习

论文提纲范文精选

阅读(36)

本文为您介绍论文提纲范文精选,内容包括论文提纲是什么意思怎么写,论文提纲范文样本。论文提纲篇1论文的写作提纲。

学习

氨气的喷泉实验范文精选

阅读(59)

本文为您介绍氨气的喷泉实验范文精选,内容包括氨气喷泉实验的原理,氨气喷泉实验简单做法。氨气的喷泉实验篇1【摘要】用固、固方式制备氨气,直接连接喷泉实验装置,防止氨气泄露。

学习

分式方程的应用范文精选

阅读(36)

本文为您介绍分式方程的应用范文精选,内容包括分式方程实际应用方法大全,8上分式方程的应用教学。分式方程的应用篇1教材依据:

学习

致橡树语文教案

阅读(32)

本文为您介绍致橡树语文教案,内容包括致橡树带拼音的原文,致橡树的意思及含义。教学目的:

学习

高考英语题型

阅读(33)

本文为您介绍高考英语题型,内容包括成人高考英语题型,2022高考英语题型。摘要:江苏高考英语试题的第五大项为“任务型阅读”,启用自2008年,是相对较“新”的一种高考英语试题形式。本文就针对该题型的特点及解题思路谈谈笔者的看法。

学习

高考舞蹈特长生范文精选

阅读(37)

本文为您介绍高考舞蹈特长生范文精选,内容包括高考舞蹈艺术生文案,舞蹈特长生高考加分吗。高考舞蹈特长生篇1摘要:随着素质教育理念的普及,舞蹈特长生教育作为其重要的组成部分而受到教育界和舞蹈界的共同关注,然而近年来舞蹈特长生的考后