Cocktails in ice spheres. Caviar1) made of olive oil. Disappearing transparent raviolis2). Sound cool? Well, these are all examples of Molecular gastronomy. Molecular gastronomy blends physics and chemistry to transform the tastes and textures of food. The result? New and innovative dining experiences. The term molecular gastronomy is commonly used to describe a style of cuisine in which chefs explore culinary3) possibilities by borrowing tools from the science lab and ingredients from the food industry. Formally, the term molecular gastronomy refers to the scientific discipline that studies the physical and chemical processes that occur while cooking. Molecular gastronomy seeks to investigate and explain the chemical reasons behind the transformation of ingredients, as well as the social, artistic, and technical components of culinary and gastronomic phenomena.
Many modern chefs do not accept the term molecular gastronomy to describe their style of cooking and prefer other terms like "modern cuisine", "modernist cuisine", "experimental cuisine", or "avant-garde4) cuisine". Heston Blumenthal from The Fat Duck restaurant says molecular gastronomy makes cuisine sound elitist and inaccessible, as though you need a degree in rocket science5) to enjoy it. In the end, molecular gastronomy or molecular cuisine―or whatever you want to call this cooking style―refers to experimental restaurant cooking driven by the desire of modern cooks to explore the world's wide variety of ingredients, tools, and techniques. Molecular gastronomy research starts in the kitchen where chefs study how food tastes and behaves under different temperatures, pressures, and other scientific conditions.
The possibilities are endless
Molecular gastronomy experiments have resulted in new innovative dishes like hot gelatins6), airs, faux caviar, spherical ravioli, and crab ice cream. Ferran Adria from El Bulli restaurant used alginates7) to create his system of spherification which gelled8) spheres that literally burst in your mouth. Heston Blumenthal discovered the ability of fat to hold flavor and created a dish that had three flavors―basil, olive, and onion―with each taste being perceived in sequence9). The potential of molecular gastronomy is enormous. It is revolutionizing traditional cooking and transforming dining into a surprising emotional and sensory experience.
Is it safe?
When people hear the words molecular gastronomy or molecular cuisine for the first time they often mistakenly view it as unhealthy, synthetic10), chemical, dehumanizing, and unnatural. This is not surprising given that molecular gastronomy often relies on fuming11) flasks12) of liquid nitrogen, led-blinking water baths, syringes13), tabletop distilleries14), PH meters, and shelves of food chemicals with names like carrageenan15), maltodextrin16), and xanthan17). My friend's first reaction when I surprised her with a liquid pea spherical raviolo was to say "Can I eat this? Is this safe? Why don't you try it first?" The truth is that the "chemicals" used in molecular gastronomy are all of biological origin. Even though they have been purified and some of them processed, the raw material origin is usually marine, plant, animal, or microbial. These additives have been approved by EU standards and are used in very, very small amounts. The science lab equipment used just helps modern gastronomy cooks to do simple things like maintaining the temperature of the cooking water constant (water bath), cooling food at extremely low temperatures quickly (liquid nitrogen), or extracting flavor from food (evaporator). There is still some debate out there about the healthiness of molecular gastronomy but I personally believe there are far bigger health issues with the everyday food we consume. In the end, you are not going to be eating liquid pea spheres every day anyway.
Molecular gastronomy should be accessible to everyone
If you are not a professional chef with a fully equipped kitchen you can still enjoy molecular gastronomy at home without spending too much money. Many molecular cuisine recipes don't require special equipment or "chemicals". With as little as $50 you can get some basic molecular gastronomy substances to start making spheres, airs, and gels. Want to cook with liquid nitrogen? That gets a bit more expensive but is a lot of fun. You'll have to spend about $500 and carefully follow some safety procedures.
冻成球状的鸡尾酒,橄榄油制成的鱼子酱,会消失的透明意式小方饺,听起来是不是很酷?这些都是分子料理的实例。分子料理把物理及化学手段结合在一起以改变食物的味道和口感。结果是什么呢?新颖而创新的饮食体验。而“分子料理”这个词通常被用来描述一种烹饪风格――在该风格的烹饪中,厨师通过借用科学实验室的工具以及食品业的原料来探索烹调的可能性。正式来说,这一用语指的是一门科学学科,该学科旨在研究烹饪中的物理及化学过程。分子料理力***研究和解释导致原料转化的化学原因,以及烹饪和美食现象中的社会、艺术和技术因素。
许多现代厨师并不接受别人用分子料理这个词来描述他们的烹饪风格,而喜欢用诸如“现代派料理”“现代主义料理”“实验料理”或是“先锋派料理”一类的其他名称。英国肥鸭餐厅的主厨赫斯顿・布鲁门瑟认为分子料理这一名称使食物听起来很高级、高不可攀,就好像你需要有个高深学科的学位才能享用这种美食一样。总之,分子料理或分子美食――或是其他任何你想用来描述这种烹调风格的名称――指的是现代厨师在探索广阔世界的各种食材、工具和技术这一渴望的驱使下而做的实验性餐厅菜肴。分子料理的研究就始于厨房,厨师们在那里研究食物在不同的温度、压力以及其他科学条件下的味道及状态。
分子料理有无限可能
分子料理领域的实验已经创造了许多新式菜肴,例如热明胶、气态物、人造鱼子酱、球状意式小方饺和蟹肉冰淇淋。艾尔布利餐厅的主厨费朗・亚德里阿用褐藻酸盐制作了一系列胶化成球状的食物,它们真的能在你的嘴里爆开。赫斯顿・布鲁门瑟发现了脂肪可以保存食材的风味并借此创造出一道有三种味道的菜肴――罗勒、橄榄和洋葱――并且让每一种味道依次出现。分子料理的潜力是巨大的,它在改革传统烹饪并把饮食转变成一种惊人的情感和感官体验。
分子料理安全吗?
人们第一次听到分子料理或分子美食这类词时,总会误以为这类食物是人工合成的、用化学制品制造的,不健康、不自然也不合人性。考虑到分子料理常常需要用到盛有液氮的冒着气的烧瓶、带LED灯的恒温水槽、注射器、桌面蒸馏室、酸度计再加上大量有着诸如角叉菜胶、麦芽糖糊精和黄原胶这类名字的食用化学品,人们对分子料理有这样的误解并不奇怪。当我拿着一个液态豌豆馅的球形水饺给一个朋友看时,她大吃一惊,第一反应是问:“我能吃这个吗?这个安全吗?要不你先吃一个?”事实上,分子料理所用到的“化学品”都是纯生物制品。虽然它们都被净化了,其中有些还经过加工处理,但原材料的来源通常都是海洋生物、植物、动物或微生物。这些添加剂符合欧盟的相关标准,用量也极其微小。而科学实验室器材也只是被现代派料理的厨师用来辅助完成一些简单的操作,如(用恒温水槽)保持烹调过程中水温恒定不变、(用液氮)在极低温环境下使食物迅速降温或是(用蒸馏器)从食物中提取味道。虽然关于分子料理健康与否仍有争论,但我个人认为我们日常食用的食物所带来的健康隐患比分子料理大多了。再说了,反正你也不会每天都吃液态的豌豆球。
分子料理应该平民化
如果你不是职业厨师,没有设备齐全的厨房,你也可以不花大价钱就在家享受一顿分子料理。许多分子料理的食谱都不需要特殊设备或是“化学品”。只要50美元你就能买到一些分子料理的基本原料来开始制作球状体、气态物和胶状体。想用液氮来做饭?这可有点贵,不过也确实很好玩。你得花大概500美元,还要认真遵守一些安全规程。
1. caviar [?k?vi?(r)] n. 鱼子酱
2. ravioli [?r?vi???li] n. 意式小方饺(煮熟后浇番茄酱食用)
3. culinary [?k?l?n?ri] adj. 烹饪的
4. avant-garde: 前卫的
5. rocket science: 高深的事;难以理解的事
6. gelatin [?d?el?t?n] n. 明胶
7. alginate [??ld???ne?t] n. 褐藻酸盐;褐藻胶
8. gel [d?el] v. (使)成凝胶状;胶化
9. in sequence: 依次;逐一
10. synthetic [s?n?θet?k] adj. 合成的
11. fume [fju?m] vt. 烟熏;冒(烟)
12. flask [fl?sk] n. 烧瓶
13. syringe [s??r?nd?] n. 注射器
14. distillery [d??st?l?ri] n. 蒸馏室
15. carrageenan [?k?r?'i?n?n] n. 角叉菜胶
16. maltodextrin [?m?lt?u'dekstrin] n. 麦芽糖糊精
17. xanthan [?z?nθ?n] n. 黄原胶