【摘要】本文分别介绍激光超声波,激光超声检测技术,超声无损检测数值研究,激光超声信号处理等方面的进展,为激光超声技术检测材料力学性能提供理论依据。
【关键词】激光超声 表面波 无损检测
一、激光超声波研究进展
激光超声技术在材料无损检测研究方向的研究热点。首先,激光是一种定向的电磁波,它具有高亮度,而且在信息的获得和传播上具有良好的运用;同时,激光广泛用于医学诊断、工业发展及***事技术等领域。超声波的传播介质可以是固体、液体和气体,通过它们之间的联系和运用, 然后对传播中的超声波进行信息提取,进而准确测量物体的密度、硬度、强度、浓度、弹性等性质,并检测出物体的表面缺陷,客观地评价材料的物理性质。
激光超声技术与传统的超声技术相比之下具有更大的优势,因为激光超声技术不需要接触、分辨率很高、频带较宽,能对纳米材料的力学性能进行有效评价,同时能够检测出精确到微、纳米级的缺陷,因此激光超声技术在检测材料力学性能和表面缺陷的方面具有可行性。
1963年,White最早提出使用激光激发超声技术的观点,因为激光可以在固体中传播,所以他尝试利用脉冲激光在固体中进行超声激发,发现固体会吸收激光、微波、电子束等辐射而产生弹性波。随后,在越来越多的研究应用中,激光除了被用于固体中激发超声,也被应用于液体和气体中。Askaryan提出在液体中激发超声, 用红宝石激光射入液体激发超声。随着科技发展,许多学者围绕着激光超声展开大量的实验和研究。Dewhurst等首次利用脉冲激光激发兰姆波,测量2%精度的薄膜厚度;Wu等通过实验检测到兰姆波的波形,并根据波形的传播特征和色散关系,计算薄膜的弹性、厚度等相关的力学参数。学者们发现,在一定条件下超声波可以在材料无损的情况下被激发出来,于是激光超声开启一种新的用于材料结构性能的无损检测。
激光超声技术结合激光和超声波的特点,具有极大的发展潜力,在工程研究和应用中具有重大科学意义和学术价值。
二、激光超声检测技术的研究进展
近年来,国内外科学家为了更好地发展和应用激光超声检测技术,做了基础大量的研究工作, 主要利用激光超声技术进行材料性能无损检测的相关研究。Domarkas等利用声表面波在表面缺陷可以来判定缺陷的力学特征。Portz等理论研究超声波在平板上的反射、透射中能量比例与频率的关系。Fortunko利用激光超声技术探测到两维缺陷的形状特征, 很为工程项目中探测焊接材料内部损伤提供帮助。Rokhlin等提出一种基于非线性的频率调制的超声技术, 探索层状材料中间层的物理性质。随着越来越多的学者进行理论和实践的研究, 激光超声无损检测将被广泛应用在各个领域。
三、超声无损检测数值研究的进展
在进行超声无损检测的实验研究过程中,衍生许多有效而便于分析的数值研究方法。主要的数值计算方法有:有限元法、有限差分方法、边界元方法等。
通过长期的实验与研究,学者们有效的运用了这三种计算方法。Hirao等利用有限差分的数值法分析瑞利波中各种频率成分反射和透射系数与表面缺陷深度的关系。Liu等将有限元方法与边界积分法很好地结合在一起,对超声波在遇到表面缺陷时产生的散射声场进行分析,并准确的描述通过数值模拟弹性波在缺陷附近的模式转换过程。除此之外,边界元方法也具有很大优势,它使用资源节省,而且能处理大模型的有关问题,广泛运用于分析超声波与表面缺陷的关系。Rose使用混合边界元方法模拟不同频率和模态的Lamb波在经过不同曲表面缺陷发生的散射场,为超声检测表面缺陷的结构特征提供充分的理论参考依据。这三种数值计算方法各有优点和不足,有限差分法虽然计算速度快,但求解过程不稳定。边界元方法在离散过程中无法分析超声波在材料内部的传播特性。有限元方法是要利用严密的数学思想处理复杂的几何构形、物理问题并且高效地实现计算机功能。有限元方法不仅能够灵活处理各种复杂结构材料中的传播问题,还能通过建立有限元模型分析各种参数随环境变化的影响, 如: 热扩散过程、光学穿透的过程等,并可以获取全场数值解。
有限元方法在研究激光超声技术领域是一种新兴数值计算方法。它不仅能模拟复杂材料和结构的声场分布,而且能准确描述场中某点的位置和波形。有限元具有高精度的特点,同时能预测各种情况的可能性,因而被广泛运用于工程技术。因此,在本文的研究中,通过对有限元方法的应用来研究激光激发超声的技术,分析材料的力学特征与各类参数之间的关系,进而为激光超声的无损检测奠定理论基础。
四、激光超声信号的研究进展
应用激光超声技术对材料进行无损检测和力学性能的评价的同时需要严密分析材料结构性质和力学参数的关系。在超声无损检测的过程中,检测和分析超声信号是整个过程的关键。对于各种材料的非稳态超声信号处理时,待测信号的表现形式主要由信号的频率、幅度、相位这三种组成,但是考虑到实际材料的结构力学特征较复杂,可能会影响超声信号的平稳性。而对于稳态信号的检测,学者们大多使用Fourier变换进行分析,但仍然具有不足,比如信噪比的限制,和测量参数的假频现象。在这里介绍一种典型双线性时频分析方法,它基于光滑的Wigner-Ville时频分析,主要是是通过集中瞬时频率信号的能量来实现分析,最终的分析结果非常明显,具有高效性。
首先通过分析单个波形,对激光激发的瞬态表面模态和能量的特性进行探究,然后利用群延迟时间计算出群速度,这与一般的方法相比显得更加优越。而单个激光超声脉冲激发出宽带的过程中存在一定缺点,在外界宽带噪声的干扰下容易降低效率,因此为了提高对激光超声信号的检测效率,许多研究者利用激光超声在时间和空间分布的调制技术,使激发的超声信号向窄带线性调频信号进行转变,从而更好地运用窄带滤波技术或信号处理技术来提高检测的信噪比。通过对激光超声信号的研究,为以后激光超声无损检测材料的性能奠定了良好基础。
五、结论
本文基于激光超声技术的研究进展,分别介绍激光超声波,激光超声检测技术,超声无损检测数值研究,激光超声信号处理等方面的进展,为激光超声技术检测材料力学性能提供理论依据,对激光超声技术的研究工作具有一定的参考价值。
转载请注明出处学文网 » 激光超声及其无损检测技术的研究进展