一纵观国内外成功的电商企业,对用户行为信息的分析和使用,无不在这个兵家必争之地做大量投入。
前些日子,几家电商的价格战打得不亦乐乎,继去年的“双11大促”和“6·18狂欢节”之后,电商之间以价格为主要诉求的大规模促销层出不穷,几乎要把所有能够用来造势的节日都用上了。而消费者们作为这场游戏中的弱者,不断地被这些真假价格战着和引导着。
然而,在当今的商场上,还有另外一类企业不是通过简单粗暴的价格战,而是通过对数据的充分使用和挖掘而在商战中获胜的。
最典型的当属全球电子商务的创始者亚马逊()了,从1995年首创网上售书开始,亚马逊以迅雷不及掩耳之势,彻底颠覆了从***书行业开始的很多行业的市场规则及竞争关系,10年之内把很多像Borders以及Barnes and Noble这样的百年老店被逼到破产或濒临破产。
亚马逊在利润并不丰厚的***书行业竞争中取胜的根本原因在于对数据的战略性认识和使用,在大家还都不太明白什么是电子商务时,亚马逊已经通过传统门店无法比拟的互联网手段,空前地获取了极其丰富的用户行为信息,并且进行深度分析与挖掘。
何为“用户行为信息”(User Behavior Information)呢?简单地说,就是用户在网站上发生的所有行为,如搜索、浏览、打分、点评、加入购物筐、取出购物筐、加入期待列表(Wish List)、购买、使用减价券和退货等;甚至包括在第三方网站上的相关行为,如比价、看相关评测、参与讨论、社交媒体上的交流、与好友互动等。
和门店通常能收集到的购买、退货、折扣、返券等和最终交易相关的信息相比,电子商务的突出特点就是可以收集到大量客户在购买前的行为信息,而不是像门店收集到的是交易信息。
在电商领域中,用户行为信息量之大令人难以想象,据专注于电商行业用户行为分析的公司——睿广智能科技的不完全统计,一个用户在选择一个产品之前,平均要浏览5个网站、36个页面,在社会化媒体和搜索引擎上的交互行为也多达数十次。如果把所有可以采集的数据整合并进行衍生,一个用户的购买可能会受数千个行为维度的影响。对于一个一天PU近百万的中型电商上,这代表着一天近1TB的活跃数据。而放到整个中国电商的角度来看,更意味着每天高达数千TB的活跃数据。
正是这些购买前的行为信息,可以深度地反映出潜在客户的购买心理和购买意向。例如,客户A连续浏览了5款电视机,其中4款来自国内品牌S,1款来自国外品牌T;4款为LED技术,1款为LCD技术;5款的价格分别为4599元、5199元、5499元、5999元、7999元;这些行为某种程度上反映了客户A对品牌认可度及倾向性,如偏向国产品牌、中等价位的LED电视。而客户B连续浏览了6款电视机,其中2款是国外品牌T,2款是另一国外品牌V,2款是国产品牌S;4款为LED技术,2款为LCD技术;6款的价格分别为5999元、7999元、8300元、9200元、9999元、11050元;类似地,这些行为某种程度上反映了客户B对品牌认可度及倾向性,如偏向进口品牌、高价位的LED电视等。
亚马逊通过对这些行为信息的分析和理解,制定对客户的贴心服务及个性化推荐。例如:当客户浏览了多款电视机而没有做购买的行为时,在一定的周期内,把适合客户的品牌、价位和类型的另一款电视机促销的信息通过电子邮件主动发送给客户;再例如,当客户再一次回到网站,对电冰箱进行浏览行为时,可以在网页上给客户A推荐国产中等价位的冰箱,而对客户B推荐进口高档价位的商品。
这样的个性化推荐服务往往会起到非常好的效果,不仅可以提高客户购买的意愿,缩短购买的路径和时间,通常还可以在比较恰当的时机捕获客户的最佳购买冲动,也降低了传统的营销方式对客户的无端骚扰,还能提高用户体验,是一个一举多得的好手段。
纵观国内外成功的电商企业,对用户行为信息的分析和使用,无不在这个兵家必争之地做大量投入。他们对数据战略性的高度认识和使用,非常值得国内的电商学习和借鉴。
转载请注明出处学文网 » 大数据之“用户行为分析”