地基基础论文第1篇
对整个价值工程而言,功能分析是其中的核心部分,有着至关重要的作用。功能分析主要包括三个部分,分别是:功能定义,功能整理与功能评价。功能分析对整个价值工程的效用高低有着直接的影响,功能分析为设计与施工提供了必要的科学依据。功能分析具体表现在,定性分析工程勘察,地基基础设计,以及基坑支护体系的功能与成本,确定它们之间所存在相互关系,掌握它们的必要功能,在此基础上,科学地分配各项成本,合理地创造或者进一步完善建筑工程的方案。事实上,地基基础工程的各个功能之间的联系是十分复杂的。利用功能分析,能够对其功能与互相关系进行系统的分析。
1.1工程勘察功能分析工程勘察分析的最终目的是为今后的设计与施工提供必要的科学的依据。具体表现在:第一,要有充分的依据。一方面,不能与工程建设标准强制性条文相冲突。另一方面,要进行充分的调查研究,不仅要掌握该地区的工程地质特点,还要掌握相邻建筑地的地基基础情况。第二,要有可靠的技术。具体体现为:运用科学的勘察方法和手段,勘察工作细致到位,有足够的勘察工作量与清晰度,准确分析岩土技术参数,准确描述场地稳定性与适宜性。第三,要切实可行。具体体现为:地基条件评价高,方便进行施工,而且对环境影响小。第四,要有合理的经济效益。具体体现为:勘察费用合理,基础直接费用合理,而且工期效应良好。
1.2地基基础功能分析第一,要有合理的技术。具体表现为:选择合理的持力层;满足地基强度的要求,具体包括持力层强度和软弱下卧层强度两个方面;符合地基变形的要求,要熟练掌握地基变形计算的方法,并达到符合规范要求的标准;符合稳定性的要求,例如位于坡地岸边,要有合理的基础选型,满足基础本身的强度与刚度等各项要求。第二,要切实可行。具体表现为:满足当地的地质条件的要求,施工技术力量十分雄厚,施工经验十分丰富。第三,要对环境影响小。具体表现为:场地规划合理,施工噪音小,不影响临近建筑内人们的正常生活,污水、排浆等方面不存在问题,不影响其他建筑的地下沟管。第四,要有合理的工期。具体表现为:工期效应良好,占据总工期的时间合理。第五,要有合理的经济效益。具体表现为:基础直接费与工程直接费合理。
2地基基础价值工程实际应用
2.1功能指数的表达由价值工程的基本原理,我们可以得出其相应的价值功能评价公式,即为:V=F/C。其中V代表着功能价值,C代表着功能的成本,F代表着功能的指数。
2.2功能指数的定量化根据上面的功能分析的结果,通过层次分析的理论来确定权向量。其具体的步骤是:首先,建立递阶层次结构的功能系统***。其次,建立矩阵,计算各层次中因素的相对权重。第三,进行一致性检验。第四,计算各个次级的功能对总功能的合成权重。
2.3功能指标的评分在整个的功能系统中,不仅有定量的指标,同时也有定性的描述,因此要统一处理所有指标的评分标准,对比其评价结果。
2.4功能指数的计算对层次分析所得到的各项指标的权重和指标评分的结果进行列表计算,所得到的结果就是可完成的功能指数的量化形式。如果功能指数F和功能成本C是已知的,那么所得到的功能价值V(V=F/C)越大则建筑工程的方案越优。利用加权评价判据的形式优化目标,能够得到所期望的主体或主体间的最大价值。实际整体总价值V越接近V的最大价值,那么整体的总价值越高,方案越成功。价值分量结构***能够全面反映出整体总价值的构成,方便我们直观地看出地基基础方案的优劣,有利于我们准确并且快速地进行决策工作。
3结语
地基基础论文第2篇
岩石和土壤的形成在其整个历史的存在,已经经受住了各种复杂的地质过程,因而具有复杂的结构和应力场的环境。不同类型的岩土性质往往是非常不同的,其区域的性质和强烈的个性。中国幅员辽阔,气候多样,各种特殊地质条件,例如:黄土,粘土,软土,红粘土,冻土等,特别是岩土地震作用将意味着很大的变化,如断层、液化。工程实践表明,岩土工程是一个非常实用的科学,还有许多未知的领域,需要深化研究的领域也很多。
有鉴于此,地基基础设计人员不可以认为有地质工程报告,规范的依据取得了数据。有了这些依据还远远不够,我们也需要一个强有力的理论基础和善于思辨能力,更加重视实际知识来源于实践。地基基础的设计方案不是唯一的,将各种地基及基础的处理方法和当地的实际、实践经验相结合,以获得一个更理想的解决方案。根据作者的工作经验,仅仅通过该方案建议地质报告提供的数据未必是合理的。由于许多地质报告,数据与实地描述不匹配,缺少实际地下水数据,结果报告不完整,***表数据混乱,数据是不真实的,关键问题交代不清的现象频繁出现,甚至出现欺诈行为。因此必须认真仔细分析,注重所提供的各项物理力学指标的正确性,注意所建议的地基基础方案的合理性及可行性是极其重要的。
以下两个例子可说明这一观点。某某住宅项目,单层均为11至15短肢剪力墙结构层的小高层建筑。地质报告建议采用大直径孔桩基础,桩承载的风化花岗岩层,但仔细分析后发现,现场水位较高,因此具有较高的人工挖孔桩降水的成本,且因户型原因也不易布桩。另外,挖桩需要穿越3m左右的卵石层。原建筑方案各单体仅设置半地下室,经分析,若增加一层地下室,不但可以保证基础埋深要求,而且可以将基础坐落于卵石层上,卵石层fak=260kpa E0=22Mpa。最后该项目采用了本方案,不但施工方便,而且取得了较好的经济效果。
某某工程,地质层报告给出的各层土的土壤承载力和实际开挖目测效果相差甚远,重新化验结果显示,承载力取低近一倍。这也显示了基础设计的另一个方面,必须有一流的岩土工程勘察,设计的调查试点,但也可以在基础设计消除事故发生前。
2应重视地基沉降计算的范围与要求
地基设计,包括强度设计和沉降计算两部分组成,地基的设计强度在不同条件下的设计强度可以提高和降低使用,但沉降值不低于地基沉降的允许值结算价值,这是一个非常重要的原则。根据合理基础设计计算与结算或测试结果来验证。沉降很小,可以不进行验算,例如端承桩基础, 及规范中给出的根据上部结构、地基土层分布形式、地基承载力等参数确定的只做强度设计的地基。另一种是对沉降没有严格要求的地基,例如一般路堤和砂石料等松散原料堆场地基等。
对深软土路基的建设来说,解决和差异沉降量控制是非常重要的。软基础施工事故发生的沉降或不均匀沉降过度,特别是不均匀沉降对建筑物造成的破坏最大。某工程深厚软粘土,厂房部分是一个***的桩基,靠近客厅与框架结构,钢筋混凝土条形基础。设计时有意放大,没有做沉降验算,并以为没有问题,实际使用一年后,生活间明显下沉,,达到15厘米,而该工厂是几乎没有下陷,严重影响了使用功能。深软土沉降与工程投资是紧密相关的,需要增加投资,以减低结算,因此,解决合理控制是至关重要的。控制沉降的目的是确保安全,可靠,节省投资。因此,软土地基沉降检查是必要的,甚至比强度设计也重要。另外,相邻基础地基承载力变化大,有软弱下卧层的地基等等必须验算沉降。沉降计算中应注意以下几点。
(1)计算沉降的荷载只考虑静荷载及准永久荷载,而不考虑风荷载、吊车吊重,地震等瞬间荷载。所以计算地基承载力与计算沉降的荷载组合不同,这一区别规范中有明确规定,但在设计中却往往被忽视。
(2)注意对计算沉降点的地质资料分析,更要注意分析土层分布不均匀性及地下水位变化对地基差异沉降带来的影响。
(3)沉降计算中应力值只采用附加应力值,而自重应力随深度随深度增大自然形成的变形已经形成,不产生新的沉降量。
3 应充分考虑复合地基中褥垫的作用
随着地基处理技术的发展,复合地基技术作为加固地基的一种方法得到越来越多的应用。复合地基是指天然地基在地基处理过程中部分土体得到增强或被置换。加固区是由基体(桩间土),增强体(桩)两部分组成的人工地基。复合地基中桩体和桩间土是共同承担荷载的。复合地基可分为三种:散状材料复合地基、柔性桩复合地基和刚性桩复合地基。实践证明,在桩和桩间土顶部加一层砂性土褥垫可充分发挥桩间土的作用,使桩间土的承载力大大提高,避免了由于不考虑桩间土承载力而造成的大量浪费。
(1)保证了桩同承担荷载。由于桩的弹性模量远远高于桩间土,桩产生的沉降量比桩间土小,褥垫在压密过程中使用桩刺入垫层,将上部总荷载传到桩和桩间土上,此时桩间土承载力超前发挥而桩的承载力发挥滞后。
(2)一定厚度的褥垫可调整桩、土荷载的分担比。当垫层厚度大于等于1000mm时,即可保证桩间土承载力超前发挥,同时减少桩顶面的应力集中,使基础底面反力分布更均匀些。
(3)垫层厚度调整可使桩,土水平荷载分布比变化。当垫层厚度较大时,作用在桩顶和桩间土表面的应力相差不大,基础与褥垫材料之间的摩擦系数一般为0.25~0.45,故此天然地基抵抗水平力的能力增强因此褥垫作用对刚、柔性复合地基具有普遍意义,对节省工程投资有显著的效果。
4加强高程控制,防止基底超高
地基基础论文第3篇
关键词:地基基础后浇带桩承台沉降
一、引言
基础是建筑物和地基之间的连接体。基础把建筑物竖向体系传来的荷载传给地基。从平面上可见,竖向结构体系将荷载集中于点,或分布成线形,但作为最终支承机构的地基,提供的是一种分布的承载能力。
如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。但有时由于土或荷载的条件,需要采用满铺的伐形基础。伐形基础有扩大地基接触面的优点,但与***基础相比,它的造价通常要高的多,因此只在必要时才使用。不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。因此,分散的程度与地基的承载能力成反比。有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比***基础更均匀地分布荷载。
如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。冲填土尚应了解排水固结条件。杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。
在初步计算时,最好先计算房屋结构的大致重量,并假设它均匀的分布在全部面积上,从而等到平均的荷载值,可以和地基本身的承载力相比较。如果地基的容许承载力大于4倍的平均荷载值,则用单独基础可能比伐形基础更经济;如果地基的容许承载力小于2倍的平均荷载值,那么建造满铺在全部面积上的伐形基础可能更经济。如果介于二者之间,则用桩基或沉井基础。
二、地基的处理方法
利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。
地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。
经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。
常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。
1换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。
2强夯法适用于处理碎石土、砂土、低饱和度的粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。强夯置换法适用于高饱和度的粉土,软-流塑的粘性土等地基上对变形控制不严的工程,在设计前必须通过现场试验确定其适用性和处理效果。强夯法和强夯置换法主要用来提高土的强度,减少压缩性,改善土体抵抗振动液化能力和消除土的湿陷性。对饱和粘性土宜结合堆载预压法和垂直排水法使用。
3砂石桩法适用于挤密松散砂土、粉土、粘性土、素填土、杂填土等地基,提高地基的承载力和降低压缩性,也可用于处理可液化地基。对饱和粘土地基上变形控制不严的工程也可采用砂石桩置换处理,使砂石桩与软粘土构成复合地基,加速软土的排水固结,提高地基承载力。
4振冲法分加填料和不加填料两种。加填料的通常称为振冲碎石桩法。振冲法适用于处理砂土、粉土、粉质粘土、素填土和杂填土等地基。对于处理不排水抗剪强度不小于20kPa的粘性土和饱和黄土地基,应在施工前通过现场试验确定其适用性。不加填料振冲加密适用于处理粘粒含量不大于10%的中、粗砂地基。振冲碎石桩主要用来提高地基承载力,减少地基沉降量,还可用来提高土坡的抗滑稳定性或提高土体的抗剪强度。
5水泥土搅拌法分为浆液深层搅拌法(简称湿法)和粉体喷搅法(简称干法)。水泥土搅拌法适用于处理正常固结的淤泥与淤泥质土、粘性土、粉土、饱和黄土、素填土以及无流动地下水的饱和松散砂土等地基。不宜用于处理泥炭土、塑性指数大于25的粘土、地下水具有腐蚀性以及有机质含量较高的地基。若需采用时必须通过试验确定其适用性。当地基的天然含水量小于30%(黄土含水量小于25%)、大于70%或地下水的pH值小于4时不宜采用于法。连续搭接的水泥搅拌桩可作为基坑的止水帷幕,受其搅拌能力的限制,该法在地基承载力大于140kPa的粘性土和粉土地基中的应用有一定难度。
6高压喷射注浆法适用于处理淤泥、淤泥质土、粘性土、粉土、砂土、人工填土和碎石土地基。当地基中含有较多的大粒径块石、大量植物根茎或较高的有机质时,应根据现场试验结果确定其适用性。对地下水流速度过大、喷射浆液无法在注浆套管周围凝固等情况不宜采用。高压旋喷桩的处理深度较大,除地基加固外,也可作为深基坑或大坝的止水帷幕,目前最大处理深度已超过30m。
7预压法适用于处理淤泥、淤泥质土、冲填土等饱和粘性土地基。按预压方法分为堆载预压法及真空预压法。堆载预压分塑料排水带或砂井地基堆载预压和天然地基堆载预压。当软土层厚度小于4m时,可采用天然地基堆载预压法处理,当软土层厚度超过4m时,应采用塑料排水带、砂井等竖向排水预压法处理。对真空预压工程,必须在地基内设置排水竖井。预压法主要用来解决地基的沉降及稳定问题。
8夯实水泥土桩法适用于处理地下水位以上的粉土、素填土、杂填土、粘性土等地基。该法施工周期短、造价低、施工文明、造价容易控制,目前在北京、河北等地的旧城区危改小区工程中得到不少成功的应用。
9水泥粉煤灰碎石桩(CFG桩)法适用于处理粘性土、粉土、砂土和已自重固结的素填土等地基。对淤泥质土应根据地区经验或现场试验确定其适用性。基础和桩顶之间需设置一定厚度的褥垫层,保证桩、同承担荷载形成复合地基。该法适用于条基、***基础、箱基、筏基,可用来提高地基承载力和减少变形。对可液化地基,可采用碎石桩和水泥粉煤灰碎石桩多桩型复合地基,达到消除地基土的液化和提高承载力的目的。
10石灰桩法适用于处理饱和粘性土、淤泥、淤泥质土、杂填土和素填土等地基。用于地下水位以上的土层时,可采取减少生石灰用量和增加掺合料含水量的办法提高桩身强度。该法不适用于地下水下的砂类土。
11灰土挤密桩法和土挤密桩法适用于处理地下水位以上的湿陷性黄土、素填土和杂填土等地基,可处理的深度为5~15m。当用来消除地基土的湿陷性时,宜采用土挤密桩法;当用来提高地基土的承载力或增强其水稳定性时,宜采用灰土挤密桩法;当地基土的含水量大于24%、饱和度大于65%时,不宜采用这种方法。灰土挤密桩法和土挤密桩法在消除土的湿陷性和减少渗透性方面效果基本相同,土挤密桩法地基的承载力和水稳定性不及灰土挤密桩法。
12柱锤冲扩桩法适用于处理杂填土、粉土、粘性土、素填土和黄土等地基,对地下水位以下的饱和松软土层,应通过现场试验确定其适用性。地基处理深度不宜超过6m。
13单液硅化法和碱液法适用于处理地下水位以上渗透系数为0.1~2m/d的湿陷性黄土等地基。在自重湿陷性黄土场地,对Ⅱ级湿陷性地基,应通过试验确定碱液法的适用性。
14在确定地基处理方案时,宜选取不同的多种方法进行比选。对复合地基而言,方案选择是针对不同土性、设计要求的承载力提高幅质、选取适宜的成桩工艺和增强体材料。
三、基础的设计
房屋基础设计应根据工程地质和水文地质条件、建筑体型与功能要求、荷载大小和分布情况、相邻建筑基础情况、施工条件和材料供应以及地区抗震烈度等综合考虑,选择经济合理的基础型式。
砌体结构优先采用刚性条形基础,如灰土条形基础、Cl5素混凝土条形基础、毛石混凝土条形基础和四合土条形基础等,当基础宽度大于2.5m时,可采用钢筋混凝土扩展基础即柔性基础。
多层内框架结构,如地基土较差时,中柱宜选用柱下钢筋混凝土条形基础,中柱宜用钢筋混凝土柱。
框架结构、无地下室、地基较好、荷载较小可采用单独柱基,在抗震设防区可按《建筑抗震设计规范》第6.1.1l条设柱基拉梁。
无地下室、地基较差、荷载较大为增强整体性,减少不均匀沉降,可采用十字交叉梁条形基础。
如采用上述基础不能满足地基基础强度和变形要求,又不宜采用桩基或人工地基时,可采用筏板基础(有梁或无梁)。
框架结构、有地下室、上部结构对不均匀沉降要求严、防水要求高、柱网较均匀,可采用箱形基础;柱网不均匀时,可采用筏板基础。
有地下室,无防水要求,柱网、荷载较均匀、地基较好,可采用***柱基,抗震设防区加柱基拉梁。或采用钢筋混凝土交叉条形基础或筏板基础。
筏板基础上的柱荷载不大、柱网较小且均匀,可采用板式筏形基础。当柱荷载不同、柱距较大时,宜采用梁板式筏基。
无论采用何种基础都要处理好基础底板与地下室外墙的连结节点。
框剪结构无地下室、地基较好、荷载较均匀,可选用单独柱基,墙下条基,抗震设防地区柱基下设拉梁并与墙下条基连结在一起。
无地下室,地基较差,荷载较大,柱下可选用交叉条形基础并与墙下条基连结在一起,以加强整体性,如还不能满足地基承载力或变形要求,可采用筏板基础。剪力墙结构无地下室或有地下室,无防水要求,地基较好,宜选用交叉条形基础。当有防水要求时,可选用筏板基础或箱形基础。高层建筑一般都设有地下室,可采用筏板基础;如地下室设置有均匀的钢筋混凝土隔墙时,采用箱形基础。
当地基较差,为满足地基强度和沉降要求,可采用桩基或人工处理地基。
多栋高楼与裙房在地基较好(如卵石层等)、沉降差较小、基础底标高相等时基础可不分缝(沉降缝)。当地基一般,通过计算或采取措施(如高层设混凝土桩等)控制高层和裙房间的沉降差,则高层和裙房基础也可不设缝,建在同一笺基上。施工时可设后浇带以调整高层与裙房的初期沉降差。
当高层与裙房或地下车库基础为整块筏板钢筋混凝土基础时,在高层基础附近的裙房或地下车库基础内设后浇带,以调整地基的初期不均匀沉降和混凝土初期收缩。
现在我就大型基础设计中较多见的基础类型的桩基础和后浇带的设计讨论一下
1当天然地基或人工地基的地基承载力或变形不能满足设计要求,或经过经济比较采用浅基础反而不经济时,可采用桩基础。
2桩平面布置原则:
1)力求使各桩桩顶受荷均匀,上部结构的荷载重心与桩的重心相重合,并使群桩在承受水平力和弯矩方向有较大的抵抗矩。
2)在纵横墙交叉处都应布桩,横墙较多的多层建筑可在横墙两侧的纵墙上布桩,门洞口下面不宜布桩。
3)同一结构单元不宜同时采用摩擦桩和端承桩。
4)大直径桩宜采用一柱一桩;筒体采用群桩时,在满足桩的最小中心距要求的前提下,桩宜尽量布置在筒体以内或不超出筒体外缘1倍板厚范围之内。
5)在伸缩缝或防震缝处可采用两柱共用同一承台的布桩形式。
6)剪力墙下的布桩量要考虑剪力墙两端应力集中的影响,而剪力墙中和轴附近的桩可按受力均匀布置。
3桩端进入持力层的最小深度:
1)应选择较硬上层或岩层作为桩端持力层。桩端进入持力层深度,对于粘性土、粉土不宜小于2d(d为桩径);砂土及强风化软质岩不宜小于1.5d;对于碎石土及强风化硬质岩不宜小于1d,且不小于0.5m。
2)桩端进入中、微风化岩的嵌岩桩,桩全断面进入岩层的深度不宜小于0.5m,嵌入灰岩或其他未风化硬质岩时,嵌岩深度可适当减少,但不宜小于0.2m。
3)当场地有液化土层时,桩身应穿过液化土层进入液化土层以下的稳定土层,进入深度应由计算确定,对碎石土、砾、粗中砂、坚硬粘性土和密实粉土且不应小于0.5m,对其他非岩石土且不宜小于1.5m。
4)当场地有季节性冻土或膨胀土层时,桩身进入上述土层以下的深度应通过抗拔稳定性验算确定,其深度不应小于4倍桩径,扩大头直径及1.5m。
桩型选择原则。桩型的选择应根据建筑物的使用要求,上部结构类型、荷载大小及分布、工程地质情况、施工条件及周围环境等因素综合确定。
1)预制桩(包括混凝土方形桩及预应力混凝土管桩)适宜用于持力层层面起伏不大的强风化层、风化残积土层、砂层和碎石土层,且桩身穿过的土层主要为高、中压缩性粘性土,穿越层中存在孤石等障碍物的石灰岩地区、从软塑层突变到特别坚硬层的岩层地区均不适用。其施工方法有锤击法和静压法两种。
2)沉管灌注桩(包括小直径D<5O0mm,中直径D=500~600mm)适用持力层层面起伏较大、且桩身穿越的土层主要为高、中压缩性粘性土;对于桩群密集,且为高灵敏度软土时则不适用。由于该桩型的施工质量很不稳定,故宜限制使用。
3)在饱和粘性土中采用上述两类挤土桩尚应考虑挤土效应对于环境和质量的影响,必要时采取预钻孔。设置消散超孔隙水压力的砂井、塑料插板、隔离沟等措施。钻孔灌注桩适用范围最广,通常适用于持力层层面起伏较大,桩身穿越各类上层以及夹层多、风化不均、软硬变化大的岩层;如持力层为硬质岩层或地层中夹有大块石等,则需采用冲孔灌注桩。无地下水的一般土层,可采用长短螺旋钻机干作业成孔成桩。钻(冲)孔时需泥浆护壁,故施工现场受限制或对环境保护有特殊要求的,不宜采用。
4)人工挖孔桩适用于地下水水位较深,或能采用井点降水的地下水水位较浅而持力层较浅且持力层以上无流动性淤泥质土者。成孔过程可能出现流砂、涌水、涌泥的地层不宜采用。
5)钢桩(包括H型钢桩和钢管桩)工程费用昂贵,一般不宜采用。当场地的硬持力层极深,只能采用超长摩擦桩时,若采用混凝土预制桩或灌注桩又因施工工艺难以保证质量,或为了要赶工期,此时可考虑采用钢桩。钢桩的持力层应为较硬的土层或风化岩层。
6)夯扩桩,当桩端持力层为硬粘土层或密实砂层,而桩身穿越的土层为软土、粘性土、粉土,为了提高桩端承载力可采用夯扩桩。由于夯扩桩为挤土桩,为消除挤土效应的负面影响,应采取与上述预制桩和沉管灌注桩类似的措施。
后浇带设计
因调整地基初期不均匀沉降而设的后浇带,带宽800~1O00mm。后浇带自基础开始在各层相同位置直到裙房屋顶板全部设后浇带,包括内外墙体。施工时后浇带两边梁板必须支撑好,直到后浇带封闭并混凝土达到设计强度后拆除。后浇带内的混凝土等级采用比原构件提高一级的微膨胀混凝土。如沉降观测记录在高层封顶时,沉降曲线平缓可在高层封顶一个月后封闭后浇带。沉降曲线不缓和则宜延长封闭后浇带时间。
基础后浇带封闭前要求施工时覆盖,以免杂物垃圾掉落难于清理。并提出清除杂物垃圾的措施,如后浇带处垫层局部降低等。有必要时后浇带中设置适量加强钢筋,如梁面、底钢筋相同等措施。
设计者必须认真对待由于超长给结构带来的不利影响,当增大结构伸缩缝间距或者是不设置伸缩缝时,必须采取切实可行的措施,防止结构开裂。在适当增大伸缩缝最大间距的各项措施中,在结构施工阶段采取防裂措施是国内外通用的减小混凝土收缩不利影响的有效方法,我国常用的做法是设置施工后浇带。另外,当建筑物存在较大的高差,但是结构设计根据具体情况可不设置永久变形缝时,例如高层建筑主体和多层(或低层)裙房之间,也常常采用施工后浇带来解决施工阶段的差异沉降问题。这两种施工后浇带,前者可称之为收缩后浇带,后者可称之为沉降后浇带。
后浇带的设计
当建筑结构的平面尺寸超过混凝土规范规定的伸缩缝最大间距(混凝土规范第9.1.1条)时,可考虑采用施工后浇带的方法来适当增大伸缩缝间距。但一般地上结构由于受环境温度变化影响较大,所以伸缩缝最大间距不宜超过混凝土规范限值过多,同时应注意加强屋面保温隔热,采用可靠的、高效的外墙外保温,并适当提高外纵墙、山墙、屋面等重要部位的纵向钢筋配筋率。当地上结构由于抗震设计需要而设置了防震缝时,伸缩缝宽度应满足防震缝宽度的要求。地下室结构超长的情况较为常见,除地下室顶板和处于室外地面以上的地下室外墙受温度变化影响相对较大外,地下室内部和基础结构在使用阶段受室内外温度变化影响较小,需解决的主要问题是混凝土收缩应力对结构的影响。除在施工阶段设置后浇带外,应该加强地下室顶板及地下室外墙的配筋,建议纵向钢筋最小配筋率不宜小于0.5%,钢筋应尽可能选择直径较小的,一般10到16即可,间距尽量选择较密的,宜不大于150mm,细而密的钢筋分布对结构抗裂是有利的。
必须指出的是,后浇带只能解决施工期间的混凝土自收缩,它不能解决由于温度变化引起的结构应力集中,更不能替代伸缩缝。有一些结构设计者将后浇带和伸缩缝等同起来的看法是错误的,因为两者的作用并不相同。
当地下室结构超长过多,单靠设置后浇带不足以解决混凝土收缩和温度变化问题时,可以考虑采用补偿收缩混凝土,在适当位置设置膨胀加强带。采用这种方法,不仅可以进一步增大伸缩缝最大间距,而且可以用膨胀加强带取代部分施工后浇带,从而实现混凝土的连续浇筑即无缝施工。但应注意,采用膨胀加强带取代部分施工后浇带时,膨胀加强带的位置应设置在结构温度应力集中部位,并应制定严格的技术保障措施,保证混凝土原材料的质量和微膨胀剂的配合比准确,结构设计应对地下室结构各部位混凝土的限制膨胀率提出明确要求。
对高层建筑主体与裙房之间是设置永久变形缝,还是在施工阶段设置沉降后浇带,应该根据建筑场地地基持力层土质情况、基础形式、上部结构布置等条件综合确定。当地基持力层土质较好,例如高层建筑基础做在基岩层或卵石层上,或采用桩基时,高层建筑沉降变形量较小,此时可考虑采用施工后浇带而不设置永久变形缝,将高层建筑与裙房基础(或地下室)连成整体。当地基持力层压缩性较高,且厚度较大,高层建筑主体与裙房之间的高差悬殊较大,高层建筑荷载较大,则由于高层建筑与裙房之间的差异沉降量较大,在采用天然地基的情况下,还是以设置永久变形缝将高层建筑与裙房彻底脱开为好。当高层建筑与相邻的裙房之间设置永久变形缝时,高层建筑的基础埋深一般应大于裙房基础埋深至少2米,不满足此要求时应计算高层建筑的稳定性,并采取可靠措施防止高层建筑与裙房之间发生相互倾斜。笔者曾经参观过某工程,高层建筑地下一层,地上十六层,纯地下车库一层,与高层建筑地下室贯通,其间设置了沉降缝,基础埋深基本相同,沉降缝间采用硬质材料填充。由于没有解决好高层建筑与地下车库间的互倾问题,建筑投入使用后,发现沉降缝两侧墙体开裂,造成地下室渗漏。
近年来,复合地基得到了广泛应用,复合地基可以提高地基持力层承载力,提高土体弹性模量,有效地控制建筑物沉降。北京地区有些工程已经通过在高层建筑下采用复合地基的方法来替代桩基,以解决高层建筑主体与裙房之间差异沉降的问题。不论采用哪种方法,如果采用施工后浇带而不设置永久变形缝,都应依据相关规范计算裙房和高层建筑的整体倾斜。当采用地基处理时,在结构设计***纸上,应明确规定采用地基处理后,高层建筑与裙房之间的变形要求。
施工后浇带的位置,应根据基础和上部结构布置的具体情况确定,不能想当然,搞一刀切。后浇带应设置在结构受力较小处,一般在梁、板跨度内的三分之一处,结构弯矩和剪力均较小,且宜自上而下对齐,竖向上不宜错开,后浇带间距一般为30米到50米。在高层建筑与裙房之间设置后浇带时,后浇带宜处于裙房一侧,且在结构设计上,应注意加强高层建筑与裙房相连部位的构造,提高纵向钢筋配筋率,用以抵抗后浇带封闭后由剩余差异沉降差所引起的结构内力。为减小后浇带封闭后由剩余差异沉降差所引起的结构内力,尚应采取其他措施,通常可考虑以下方法:
1,高层建筑采用桩基或其他地基基础处理方法,或补偿基础,尽量扩大高层建筑基础与地基接触面积,减小高层建筑基础底面接触压力,而裙房则采用埋深较浅的***柱基或条形基础等,调节高层建筑与裙房之间的差异沉降。
2,尽量减小裙房部分基础与地基的接触面积,即尽量增大裙房部分的基础底面接触压力,加大裙房的沉浸量。
3,结合高层建筑埋置深度要求,调整高层建筑地下室高度,使地基持力层落在压缩性小、地基承载力高的土层上,可有效地减小高层建筑的沉降量。
进行地基基础设计时,结构设计者应结合工程具体情况,多方面对比,选择经济合理的方案。
后浇带部位的钢筋一般不宜断开,而应让钢筋连续通过,即只将后浇带处的混凝土临时断开。但有时工程具体情况不允许留后浇带,例如某工程地下车库通道的顶板、底板均与主楼相连,但是由于施工场地狭小,无法留设后浇带,于是要求施工单位先施工结构主体,待主体完成后再施工车道部分,要求施工单位对与主体相连的钢筋必须预留,后期采用焊接连接,同一截面的钢筋焊接连接率不得大于50%。
有的工程将后浇带内钢筋全部断开,这时候,为避免在同一截面钢筋100%连接,宜将后浇带曲折布置,而不要沿一直线布置。连接方式建议首选机械连接或焊接,但要注意施工质量。采用搭接连接时,应注意后浇带宽度要满足按混凝土规范计算的钢筋搭接连接长度。
基础后浇带的断面形式,应于结构设计***纸上用详***明确表示出来,而不应推给施工单位。当地下水位较高时,宜在基础后浇带下设置防水板并增设一道附加防水层。
四、工程实例
一、工程概况
工程总建筑面积5880平方米。无地下室,地上7层框架结构,底层层高4.5m,以上各层层高均为3.1m
二、地质条件
本工程±0.000标高相当于罗零标高5.240米,场地内地层自上而下依次为:①素填土,层厚0.8~2.90m,回填时间4年主要填料为残积粘性土,混砖瓦石块场地分布均匀。②淤泥,呈饱和流塑状,主要由粘粒、粉粒组成,夹杂有有机质,该层层厚4.00~9.00m。③粉质粘土,呈饱和可塑状,手搓稍有粉粒感,粘性较好,标贯试验的校正平均值为10击,层位稳定,厚度为4.80~9.55。④含泥中粗砂,呈饱和密状,层厚0.7~4m。⑤沙质粘土,呈饱和可塑状,层厚0.5~3m。⑥中砂,饱和,含泥约10~20%,均匀分布于场地,厚度约2.10~7.60m。⑦残积粘性土:饱和,可塑,原为辉绿岩脉,长石矿物已全风化成呈土状,标贯试验校正平均值为17击厚2.70~6.70m。⑧散体强风化花岗岩,大部分长石类矿物已经风化呈土状,岩心手捻可散,厚度2.25~14.20m。⑨强风化花岗岩层。⑩中风化花岗岩.
三、设计过程
柱网布置详见附***
经过PKPM结构计算软件对本楼上部结构进行的计算,取轴力最大的情况得出柱底最小轴力为1930KN,最大柱底轴力为5832KN。由于浅层土不足以承受此荷载,所以选用桩基础作为建筑物的基础。由于柱底轴力差异较大,从经济性和节约成本的考虑,所以选用2种桩径,分别是F500和F400。
在设计工程中还应该注意的是PKPM所算出的柱底轴力为设计值,不能直接用于计算需要把算出的值除以1.25来转化为特征值来计算.
1、确定单桩竖向承载力设计值
桩侧总极限摩阻力标准值:Rsk=Up×Σlifsi
桩端极限阻力标准值:Rpk=Ap×fp
本工程中的单桩极限承载力根据静载试验确定F500为4100KN,F400为3100KN
单桩竖向承载力设计值Rd=(Rsk+Rpk)/1.65
F500Rd=4100/1.65=2484.8KN
F400Rd=3100/1.65=1878.8KN
单桩竖向承载力特征值Ra=(Rsk+Rpk)/2.0
F500Ra=4100/2=2050KN
F400Ra=3100/2=1550KN
2、确定桩的数量、间距和布置方式
初步估算桩数时,先不要考虑群桩效应,
在确定桩的数量时,我是根据各底层柱的轴力确定应该选用何种直径的桩和确定桩的数量,例如在附***中的(16)-(c)柱底轴力为1944.8KN(特征值),我选用两桩承台,桩径为400;
(8)-(A)柱底轴力为4665.6KN,我选用三桩承台,桩径为500.
当为偏心受压,一般桩的根数应相应的增加10%~20%。
桩的间距(中心距)采用3.6倍桩径.
原则:使得群桩横截面的重心应与荷载合力的作用点重合和接近或者是使其重心处于合力作用点变化范围之内,并应尽量接近最不利的合力作用点。
具体布置方法见附***。
3、承台设计
***承台、柱下或墙下条形承台(梁式承台),以及筏板承台和箱形承台,承台设计包括选择承台的材料及其强度等级,几何形状及其尺寸,进行承台结构承载力计算,并应使其构造满足一定的要求。
构造要求:承台最小宽度不应小于500mm,承台边缘至桩中心的距离不宜小于桩的直径或边长,边缘挑出部分不应小于150mm,墙下条形承台边缘挑出部分可降低至75mm。条形和柱下***承台的最小厚度为500mm,其最小埋深为600mm。
本工程中承台混凝土等级C30,取其中的(8)-(A)柱位置的承台为例计算:
一、基本资料:
承台类型:三桩承台圆桩直径d=500mm
桩列间距Sa=900mm桩行间距Sb=1560mm
桩中心至承台边缘距离Sc=500mm
承台根部高度H=1100mm承台端部高度h=1100mm
柱子高度hc=700mm(X方向)柱子宽度bc=650mm(Y方向)
二、控制内力:
Nk=4666;
Fk=4666;
F=6299.1;
三、承台自重和承台上土自重标准值Gk:
a=2(Sc+Sa)=2*(0.5+0.9)=2.8m
b=2Sc+Sb=2*0.5+1.56=2.56m
承台底部面积Ab=a*b-2Sa*Sb/2=2.8*2.56-2*0.9*1.56/2=5.76m
承台体积Vct=Ab*H1=5.76*1.1=6.340m
承台自重标准值Gk''''''''=γc*Vct=25*6.34=158.5kN
土自重标准值Gk''''=γs*(Ab-bc*hc)*ds=18*(5.76-0.65*0.7)*0.8
=76.4kN
承台自重及其上土自重标准值Gk=Gk''''''''+Gk''''=158.5+76.4=235.0kN
四、承台验算:
圆桩换算桩截面边宽bp=0.866d=0.866*500=433mm
1、承台受弯计算:
(1)、单桩桩顶竖向力计算:
在轴心竖向力作用下
Qk=(Fk+Gk)/n(基础规范8.5.3-1)
Qk=(4666+235)/3=1633.7kN≤Ra=2020kN
每根单桩所分配的承台自重和承台上土自重标准值Qgk:
Qgk=Gk/n=235/3=78.3kN
扣除承台和其上填土自重后的各桩桩顶相应于荷载效应基本组合时的竖向力设计值:
Ni=γz*(Qik-Qgk)
N=1.35*(1633.7-78.3)=2099.7kN
(2)、承台形心到承台两腰的距离范围内板带的弯矩设计值:
S=(Sa^2+Sb^2)^0.5=(0.9^2+1.56^2)^0.5=1.801m
αs=2Sa=2*0.9=1.800m
α=αs/S=1.8/1.801=0.999
承台形心到承台两腰的距离B1:
B1=Sa/S*2Sb/3+Sc*(Sa+Sb)/S=1.203m
M1=Nmax*[S-0.75*c1/(4-α^2)^0.5]/3(基础规范8.5.16-4)
=2099.7*[1.801-0.75*0.65/(4-0.999^2)^0.5]/3
=1063.6kN·m
②号筋Asy=3783mmζ=0.068ρ=0.32%
10Φ22@110(As=3801)
(3)、承台形心到承台底边的距离范围内板带的弯矩设计值:
承台形心到承台底边的距离B2=Sb/3+Sc=1.020m
M2=Nmax*[αs-0.75*c2/(4-α^2)^0.5]/3(基础规范8.5.16-5)
=2099.7*[1.8-0.75*0.7/(4-0.999^2)^0.5]/3
=1047.7kN·m
①号筋Asx=3667mmζ=0.076ρ=0.36%
10Φ22@100(As=3801)
2、承台受冲切承载力验算:
(1)、柱对承台的冲切验算:
扣除承台及其上填土自重,作用在冲切破坏锥体上的冲切力设计值:
Fl=6299100N
三桩三角形柱下***承台受柱冲切的承载力按下列公式计算:
Fl≤[βox*(2bc+aoy1+aoy2)+(βoy1+βoy2)*(hc+aox)]*βhp*ft*ho(参照承台规程4.2.1-2)
X方向上自柱边到最近桩边的水平距离:
aox=900-0.5hc-0.5bp=900-700/2-433/2=333mm
λox=aox/ho=333/(1100-110)=0.337
X方向上冲切系数βox=0.84/(λox+0.2)(基础规范8.5.17-3)
βox=0.84/(0.337+0.2)=1.565
Y方向(下边)自柱边到最近桩边的水平距离:
aoy1=2*1560/3-0.5bc-0.5bp=1040-650/2-433/2=498mm
λoy1=aoy1/ho=498/(1100-110)=0.504
Y方向(下边)冲切系数βoy1=0.84/(λoy1+0.2)(基础规范8.5.17-4)
βoy1=0.84/(0.504+0.2)=1.194
Y方向(上边)自柱边到最近桩边的水平距离:
aoy2=1560/3-0.5bc-0.5bp=520-650/2-433/2=-22mm
λoy2=aoy2/ho=-22/(1100-110)=-0.022
当λoy2<0.2时,取λoy2=0.2,aoy2=0.2ho=0.2*990=198mm
Y方向(上边)冲切系数βoy2=0.84/(λoy2+0.2)(基础规范8.5.17-4)
βoy2=0.84/(0.2+0.2)=2.1
[βox*(2bc+aoy1+aoy2)+(βoy1+βoy2)*(hc+aox)]*βhp*ft*ho
=[1.565*(2*650+498+198)+(1.194+2.1)*(700+333)]*0.975*1.43*990
=9029023N≥Fl=6299100N,满足要求。
(2)、底部角桩对承台的冲切验算:
扣除承台和其上填土自重后的角桩桩顶相应于荷载效应基本组合时的竖向力设计值:
Nl=N1=2099700N
承台受角桩冲切的承载力按下列公式计算:
Nl≤β12*(2c2+a12)*tg(θ2/2)*βhp*ft*ho(基础规范8.5.17-10)
θ2=2*arctg(Sa/Sb)=2*arctg(900/1560)=60°
c2=[Sc*ctg(θ2/2)+Sc+0.5bp]*Cos(θ2/2)
=[500*ctg30°+500+433/2]*Cos30°=1371mm
a12=(2Sb/3-0.5bp-0.5bc)*Cos(θ2/2)
=(2*1560/3-433/2-650/2)*Cos30°=432mm
λ12=a12/ho=432/(1100-110)=0.436
底部角桩冲切系数β12=0.56/(λ12+0.2)(基础规范8.5.17-11)
β12=0.56/(0.436+0.2)=0.88
β12*(2c2+a12)*tg(θ2/2)*βhp*ft*ho
=0.88*(2*1371+432)*tg30°*0.975*1.43*990
=2229798N≥Nl=2099700N,满足要求。
(3)、顶部角桩对承台的冲切验算:(近似计算)
扣除承台和其上填土自重后的角桩桩顶相应于荷载效应基本组合时的竖向力设计值:
Nl=Max{N2,N3}=2099700N
承台受角桩冲切的承载力按下列公式计算:
Nl≤β11*(2c1+a11)*tg(θ1/2)*βhp*ft*ho(基础规范8.5.17-8)
θ1=arctg(Sb/Sa)=arctg(1560/900)=60°
c1=ctgθ1*2Sc+Sc+0.5bp=ctg60°*2*500+500+433/2=1293mm
a11=Sa-0.5bp-0.5bc=900-433/2-650/2=333mm
λ11=a11/ho=333/(1100-110)=0.337
底部角桩冲切系数β11=0.56/(λ11+0.2)(基础规范8.5.17-9)
β11=0.56/(0.337+0.2)=1.043
β11*(2c1+a11)*tg(θ1/2)*βhp*ft*ho
=1.043*(2*1293+333)*tg30°*0.975*1.43*990
=2433399N≥Nl=2099700N,满足要求。
3、承台斜截面受剪承载力计算:
(1)、X方向(上边)斜截面受剪承载力计算:
扣除承台及其上填土自重后X方向斜截面的最大剪力设计值:
Vx=N2+N3=4199400N
柱上边缘计算宽度bxo:
Sb/3-Sc=1560/3-500=20mm≤0.5bc=325mm
bxo=a=2800mm
承台斜截面受剪承载力按下列公式计算:
Vx≤βhs*βy*ft*bxo*ho(基础规范8.5.18-1)
X方向上自桩内边缘到最近柱边的水平距离:
ay=520-0.5bc-0.5bp=520-650/2-433/2=-22mm
λy=ay/ho=-22/(1100-110)=-0.022
当λy<0.3时,取λy=0.3
βy=1.75/(λy+1.0)=1.75/(0.3+1.0)=1.346
βhs*βy*ft*bxo*ho=0.95*1.346*1.43*2800*990=5069495N
≥Vx=4199400N,满足要求。
(2)、X方向(下边)斜截面受剪承载力计算:
扣除承台及其上填土自重后X方向斜截面的最大剪力设计值:
Vx=N1=2099700N
柱下边缘计算宽度bxo:
bxo=2*[Sc+(2Sb/3-0.5bc+Sc)*Sa/Sb]=2402mm
承台斜截面受剪承载力按下列公式计算:
Vx≤βhs*βy*ft*bxo*ho(基础规范8.5.18-1)
X方向上自桩内边缘到最近柱边的水平距离:
ay=1040-0.5bc-0.5bp=1040-650/2-433/2=498mm
λy=ay/ho=498/(1100-110)=0.504
βy=1.75/(λy+1.0)=1.75/(0.504+1.0)=1.164
βhs*βy*ft*bxo*ho=0.95*1.164*1.43*2402*990=3760082N
≥Vx=2099700N,满足要求。
(3)、Y方向斜截面受剪承载力计算:
扣除承台及其上填土自重后Y方向斜截面的最大剪力设计值:
Vy=Max{N2,N3}=2099700N
承台斜截面受剪承载力按下列公式计算:
Vy≤βhs*βx*ft*byo*ho(基础规范8.5.18-1)
Y方向上自桩内边缘到最近柱边的水平距离:
ax=900-0.5hc-0.5bp=900-700/2-433/2=333mm
λx=ax/ho=333/(1100-110)=0.337
βx=1.75/(λx+1.0)=1.75/(0.337+1.0)=1.309
βhs*βx*ft*byo*ho=0.95*1.309*1.43*2560*990=4507164N
≥Vy=2099700N,满足要求。
4、柱下局部受压承载力计算:
局部荷载设计值F=6299100N
混凝土局部受压面积Al=bc*hc=455000mm
承台在柱下局部受压时的计算底面积按下列公式计算:
Ab=(bx+2*c)*(by+2*c)
c=Min{Cx,Cy,bx,by}=Min{1050,955,700,650}=650mm
Ab=(700+2*650)*(650+2*650)=3900000mm
βl=Sqr(Ab/Al)=Sqr(3900000/455000)=2.928
ω*βl*fcc*Al=1.0*2.928*0.85*14.33*455000=16227305N
≥F=6299100N,满足要求。
5、桩局部受压承载力计算:
局部荷载设计值F=Nmax+γg*Qgk=2099.7+1.35*78.3=2205.4kN
混凝土局部受压面积Al=π*d^2/4=196350mm
承台在角桩局部受压时的计算底面积按下列公式计算:
Ab=(bx+2*c)*(by+2*c)
圆桩bx=by=Sqr(Al)=443mm
c=Min{Cx,Cy,bx,by}=Min{250,250,443,443}=250mm
Ab=(443+2*250)*(443+2*250)=889463mm
βl=Sqr(Ab/Al)=Sqr(889463/196350)=2.128
ω*βl*fcc*Al=1.0*2.128*0.85*14.33*196350=5090815N
≥F=2205432N,满足要求。
五、工程小结
1:基础设计关键是上部荷载准确性,上部荷载准确性关键是结构选型,即结构计算模型与软件的计算条件(模型)吻合程度。象纯砖混,框架,剪力墙等吻合程度是好的,导荷准确,可直接
用于基础设计。象混合结构(小设计院现象,经济欠发达区存在)、复杂结构等导荷准确性与实际有差别,如是拿来主义哪就完了。
2:结构用任何软件(通过鉴定)进行上部结构计算都可,在于习惯。而其它结构须用两种以上软件进行上部结构计算,对结果分析,手算综合确定上部荷载。
3:基础设计软件核心简单,荷载相同,各种软件计算结果一致。
4:平时注意设计交流,知识积累,切忌拿来主义,定能成为优秀结构师。
参考文献:
[1]《建筑地基基础设计规范》GBJ-7-89
[2]《建筑地基基础勘察设计规范》DBJ13-17-91
[3]《软土地基与地下工程》孙更生、郑大同
[4]《建筑桩基技术规范》JGJ94-94
[5]《建筑地基处理技术规范》GBJ79-91
[6]《基础工程设计原理》袁聚云
[7]《地基及基础》第3版中国建筑出版社
[8]《基础工程》第1版周景星
地基基础论文第4篇
首先,实地调查有助于进一步理解中医理论产生的背景,把握中医理论的精髓和特征中医理论来源于实践。社会、地理、人文环境的不同,部分导致了医家对疾病认识的差异,形成了不同的学术观点,进而发展成多种学术流派,促进了中医理论的创新发展。通过实地调查,从挖掘中医不同理论体系产生的社会背景、地理环境、人文环境等因素入手,对于我们进一步把握学术思想、理清发展脉络、掌握理论精髓意义重大。中医学推崇从天、地、人的大系统及其要素间的相互作用来考察人体的健康和疾病[1],积累经验,总结规律。所以我们要了解、求证、理解个人或学派的学术内涵和思想时,必须要了解被研究对象所处的自然地域和人文特征。如王键教授总结了新安医学六个“有机统一与结合”,即继承与创新的有机统一与结合,学派纷呈与和谐融通的有机统一与结合,家族传承与学术传承的有机统一与结合,以儒通医与融合道佛的有机统一与结合,“地理新安”与“医学新安”的有机统一与结合,中医科学与徽学文化的有机统一与结合[13]。要研究新安医学,我们很难想象在不了解地理环境、历史气候、社会和文化背景的基础上去理解这个学派的特征。再如孟河学派,它的形成与孟河的地理位置、经济、文化的繁荣以及名医辈出密切相关。当今西方著名的中医药学者VolkerScheid(蒋熙德)为研究孟河学派,“旅居上海年余,数下孟河,访问孟河医家子嗣、传人、学生200余人;阅读与孟河医学流派有关的著作、地方志、家谱百余种;亲临孟河医家的故居、坟茔、祠堂访问”。他撰写的《孟河医学源流论》(CurrentsofTraditioninChineseMedicine1626~2006)成为迄今首部全面系统论述孟河医派的历史学研究专著[14]。
其次,实地调查有助于进一步汲取民间中医药鲜活实践经验与原创思维的营养中医药学服务于大众,根植于民间。在长期的诊疗实践中,民间中医形成了原创性的诊疗方法和独特的诊疗技术。比如中医单方、秘方、验方和独特医疗技术等等,这些经验如同散落的珍珠,是数千年来广大人民群众与疾病斗争的经验积累,是祖国医学的珍宝和财富。开展实地调查,既能帮助我们明确需求找到医疗实践中存在的问题,从而从中提炼科学问题,又能取得第一手的实践素材和鲜活经验,为中医基础理论研究提供源源不断的营养源泉。李时珍先后到武当山、庐山、茅山、牛首山及湖广、安徽、河南、河北等地收集药物标本和处方,并向渔人、樵夫、农民、车夫、药工、捕蛇者不耻下问,在历代医药研究成就的基础上,历经27个寒暑,三易其稿,于明万历十八年(1590年)完成了192万字的巨著《本草纲目》。古代许多中医名家如扁鹊、华佗等都有江湖遍游的经历,这其中不仅仅解救了普众之疾苦,可能更是他们通过实地调查遍访名师博采众家之长成才的“继续教育”过程。更值得一提的是,自古至今,我国始终有一大批旧称走方医的“医生”群体活跃在民间为人治病!他们又称“铃医”或“草泽医”,“药有常用之品,有常弃之品,走医皆收之。病有常见之症,有罕见之症,走医皆习之”[15]。他们或执一草二药,或凭独门绝技,疗效卓著竟有使“沉疴顿起,名医拱手”之时。在医术传承上,他们注重经验,以师徒授受为主,又自秘其技不轻授。在医疗诊治上,他们擅长一些正统医家较少涉及的领域;多用禁咒、针灸、推拿等正统医家较少使用的手法。他们既为中医药学的发展作出了重要贡献,也为我国民族的生存和繁衍作出了贡献[16-17]。尽管这个群体常不为正规医家所称道,其医术秘技大多又是口耳相传,但却可能蕴藏着丰富的诊疗实践经验,非常值得我们学习和深入研究[18]。在近代经济学研究领域中,最为人称道的实地调查成功案例是费孝通的《江村经济》研究。当时费孝通在其导师马林诺夫斯基的指导下,于1936年在江苏省吴江县庙港乡开弦弓村(江村)进行了实地调查,在调查基础上形成了《江村经济》博士毕业报告,该书出版后成为欧洲一些学院人类学学生的必读参考书,费孝通也因此在1981年获得英国皇家人类学会授予的人类学界的最高奖──赫胥黎奖,被誉为中国社会学和人类学的奠基人之一,形成了近代中国经济学研究的一座丰碑[19]。
再者,实地调查有助于进一步培养实事求是的科学精神,营造学术争鸣的研究氛围当今时代,中医学的生存发展遇到了前所未有的历史机遇期,同时也正在接受来自行业内外多方位多层次的挑战。特别是现代科学技术的高速发展,将人们带入从未经历过甚至从未想象到的新世界,常常令人叹为观止。相比之下,深深植根在临床实践之中固守了几千年的中医学与当下世界显得越发格格不入。这种反差许多时候让我们茫然、急躁和焦虑,反映到学术风气上不免浮躁和虚幻的心态日益浓厚,实事求是的科学精神、平和与包容不同学术观点的谦虚态度渐渐蚀失。在实地调查过程中,我们既能根据事先制定的调查提纲集中就中医理论某一个问题或某几个问题深入探讨,也能不拘行业、不限资历,与关注中医药理论发展的人平等地面对面交流,能帮助中医理论研究者更接地气,更真实地把握需求和研究趋势,擦出思想的火花,对进一步培养实事求是的科学精神,营造百家争鸣的学术氛围必将大有裨益。王永炎院士在论及大学科背景下中医学的形势及整合时指出:“要跳出中医药学科的领域,服务于中医药事业的战略任务,强化国家意识,欢迎一切热爱和愿意参与中医药研究的仁人志士加入到中医药学的研究、批判和继承,就共同关注的中医药问题展开讨论和研究,这样才会达成共识,从而利于学科的完善与进步。[20]”这一点对于如何开展中医基础理论研究也有重要意义。今天我们在这里探讨实地调查研究方法为何应该成为中医基础理论研究的基本方法之一,丝毫没有贬抑其他研究方法对于中医基础理论研究的重要性,相反,我们认为它们之间一定是互为补充的关系。古人所云“读万卷书,行万里路”言简意赅,“读万卷书”说的是继承,“行万里路”指的就是实践。不仅需要“读书”和“行路(实践)”,更需要“读书”与“行路(实践)”的相参,才能相得益彰。另外,在近期对中医学方***的系统回顾和深刻反思的过程中,我们越来越强烈地感受到“读书”与“实践”是中国古贤研究世界的两个最基本研究方法,中医学自不例外!“读书”与“实践”其实也是构建中医学理论体系、推动中医学发展的两个最基本的方法学原点,它深深地融入并始终支配着中医理论体系的构建和发展过程!“读书”、“实践”与紧随其后的“思维”三者之间的互动前行,成就了中医学的辉煌。我们今天倡导实地调查法,并不是从外面找来了一个新方法到中医里来,而只是寻回渐被人忽视和遗忘的中医独特的实践研究方法。事实上我们发现,还有一些传统的中医基础理论研究方法也被忽视,比如古代贤哲在内丹术的实践过程中对于生命的真实体验以及由此对于中医理论发展的促进作用就很少被人提及和关注,它们甚至已经无法登堂入室了。我们当然应该也必须虚心接纳、认真学习一切现代科学技术,但我们在经意或不经意间丢失的传统东西也实在不少,令人痛惜!我深信在这些被我们轻易抛弃的东西中蕴藏着中国先哲们创造的极其珍贵的科学财富和思想资源。
中医基础理论研究永远不能离开也不会离开传承与创新两大主题。而在探索中医基础理论传承创新的研究方法时,在当代我们越来越习惯在以太的世界里和快餐文化里创造一切,我们的思想飞得更高、步伐走得更快、科技技术方法迅猛发展高歌凯旋的进程中,可能需要我们比以往任何时候更加关注对他人、对历史和现实世界的真实感知,需要我们比以往任何时候更加关注人自身、人与人以及人与外在事物主客观世界交互过程的实践体验,相信只有这样,包括中医、西医在内的现代生命医学体系才能走得更好、更远。
地基基础论文第5篇
关键词:软土地基勘察基础设计
近几年,经济的发展带动了电力建设迅速发展,同时由于国家“西电东送”工程的实施,苏北沿海地区新建了若干输变电工程。由于该地区地质分布有含水量大、压缩性高、承载能力低的软土薄弱层,对工程基础设计带来极为不利的影响,稍微地质勘察不详细或基础设计形式不对,都可能引起建筑物(构筑物)的过大沉降、倾斜甚至倒塌。
1工程案例及原因分析
案例一:在苏北沿海地区新建某35kV变电所,主变容量31.5MVA,变压器总重17000kg,主变基础采用长5米,宽3.8米,厚0.6米的***基础,内配Ф12@150双层双向钢筋,基础埋深1.5米,下设100厚C10混凝土垫层。就在主变就位后的第二天发现,主变基础产生不均匀沉降,最大沉降达50mm,明显不利于设备安全运行,基础只得从新浇筑。新主变基础在***基础下布置了八根12米石灰桩进行地基处理,主变荷载由复合地基承担。基础浇筑养护成功后主变重新就位,安装结束观测至今发现沉降很小。
案例二:同一地区,某在建220kV变电所,配电楼共二层,框架结构,基础采用12米Ф500(壁厚80)预制管桩,承台埋深2米,单桩设计承载力400kN。在静压桩时发现,桩达到设计标高时,压力表读数换算为桩承载力仅为300kN,而且桩最终贯入速度一直很快,这说明桩端未进入持力层,仍然处于软土薄弱层中。经设计、勘察、监理、施工等单位多方协同论证,反复研究,确定接桩方案,在原来12米桩基础上加接8米同型号管桩,后来做静载试验发现,20米桩能满足设计要求。
经分析研究,案例一工程主变基础沉降过大是由于地质勘察不详细引起的,勘察报告就没能详细反映该主变基础下的软土地基分布情况,由于潮汐对地下水位的影响,软土在含水量高时极易压缩变形,从而引起主变基础过大沉降;案例二工程处地基存在9米厚的软土层,由于设计上没有高度重视软土地基对桩基础承载力的影响,导致桩设计不合格。
2软土地基分布及地质特点
软土地基给工程上带来的事故、缺陷很多,要减少软土地基的危害,工程技术人员熟悉软土的特性就显得非常重要。所谓软土是在静水或缓慢的流水环境中沉积,经生物化学作用形成的饱和软弱粘性土。中国建筑工业出版社出版的《工程地质手册》称软土为“软土是指天然含水量大、压缩性高、承载能力低的一种软塑到流塑状态的粘性土,如淤泥、淤泥质土以及其他高压缩性饱和粘性土、粉土等”。特征指标也做了如下表述:当天然空隙比e大于1.5时,称为淤泥;天然空隙比小于1.5而大于1.0时,称为淤泥质土。
几千年来,苏北地区由于黄河淤积和改道,大陆逐步东移,形成了以粉砂、粉土为主,中间夹以粉质粘土和淤泥质粉质粘土软土的地貌。根据工程地质勘察报告发现,苏北沿海地区海拔在1.5~4.5米之间,整个地面从东南向西北缓缓倾斜,软土厚度从3米至14米,地下水位受大气和潮汐影响,一般在0.5~1.5米之间。该地区地质分布土质的一些典型物理性质指标见下表。
表一:土体物理性质指标
土层
厚度(m)
天然含水量ω(%)
天然孔隙比e
压缩模量Es(MPa)
塑性指数IP(%)
液性指数IL
承载力fk(Kpa)
耕土
0.5~1
粉土
2.5
32
0.724
8.21
8.21
9.7
100
粉质粘土
1.5
33
0.928
4.34
4.34
13.8
90
淤泥质粉质粘土
3~14
40~55
0.899~1.348
2.57~4.12
9~14.5
1.22~2.49
60
粉土
4~9
27.3
0.767
6.23
11.0
0.6
140
粉土夹粉砂
未钻透
24
0.598
15.98
170
以上数据是经统计该地区几个变电所工程地质勘察报告而来,从表中不难发现,作为软土层的淤泥质粉质粘土埋深不深,但对不同的场地,该土土层厚度分布不均,这对建筑物和构筑物基础设计提出了较高的要求。
3处理措施及设计对策
3.1细心勘察,查清场地水文地质情况。
拟建场地勘察评价很重要,如若勘测点布置过少,或只借鉴相邻建筑物的地质资料,对建筑场地没有进行认真勘察评价,提出的地质勘察报告不能真实反映场地条件,勘察资料不准确,结论不正确、建议不合理,就会给结构设计人员造成误导。如淤泥质土、暗塘等没有被发现,会使新建的建筑物和构筑物发生严重下陷、倾斜或开裂。
沿海地区工程现场的地质、水文勘察调查宜包括下列内容:了解工程区的地形地貌特征、微地貌类型,地层成因类型、岩土性质、产状与分布概况,不良地质现象概况,地下水类型和分布概况,区域稳定性和历史地震背景和震情。查明海水的侵入范围、咸水(包括现代海水和古代残留海水)与淡水的分界面及其变化规律;潮汐对地下水动态的影响。只有认真研究地质资料,以数据说话,才能设计出切实可行的基础方案。
3.2认真研究、多方论证,确定最佳地基处理和基础设计方案。
苏北沿海地区地质是由于黄河淤积和黄海冲积而成,地貌属于淤泥质海岸,为我国淤泥质海岸分布最广、最典型的地区之一。淤泥质软土的存在对工程基础设计提出了更高的要求。淤泥质软土地基承载力低,压缩性大的特点,不易满足建筑物和构筑物地基设计要求,需进行地基处理。根据软土地基处理的原理和作用,根据多年一些输变电工程建设实践,可以采取以下简单易行、经济效益较高的软土处理方法。
(1).换土法
此方法适用于浅层软弱地基及不均匀地基的处理。当淤泥土层厚度在4m以内时,可采用挖除淤土层,换填砂土、灰土、粗砂、砾石、片石、卵石等办法进行地基处理,换填淤泥土层,提高软土地基强度,一般换填的厚度为30~100cm。换填土相对来说造价高,但可以节省工期。
(2).地基加固处理及桩基法
当淤土层较厚,难以大面积进行深处理时,可采用打桩的办法进行加固处理。当淤土层厚度小于5m时,宜打砂桩或石灰桩,通过吸水和排水来挤密淤土,使其孔隙比小于1,以达到一般地基要求;当淤土层厚度在5~7m时,宜打预制管桩至硬土层,设承载桩台;当淤土层厚度在7~10m时,宜打灌注桩至硬土层,设承载桩台;淤土层厚度在10m以上时,宜采用打悬浮桩的办法,挤密淤土层并靠摩擦承载。
(3).优化基础法
①扩大条基底面积,增设钢筋混凝土基础梁。可将条形基础浅埋,把基础设置在地基表层的密实土层上,从而避开淤土层,适当设置钢筋混凝土基础梁,增大基础的刚度,提高基础的稳定性和抗变形的能力。
②采用筏板基础或箱形基础。对小型建筑物可采用扩大基础底板的方法,如设计较薄的钢筋混凝土底板。对大中型工程,可采用空箱底板,即在不增加建筑物造价的情况下,用加大底板高度、减轻底板自重的办法来适应软土地基要求。
③采用合理的桩基础。钻孔灌注桩应用十分广泛,但因属隐蔽工程,成桩后质量检查比较困难,且由于软土的特殊性质,经常会出现一些缩径、断桩、桩身孔洞和“烂桩头”等质量问题。在潮汐地区,没有采取措施来稳定孔内水位,灌注砼时桩孔易坍孔,在该地区基础设计时应少使用;预制桩的承载力由桩端承力和桩侧摩擦力组成,由于软土不易固化,降低了桩的侧摩擦力,使桩在工程使用中不安全,因此该地区基础设计时也应少使用。根据施工实例统计,沉管灌注桩基础是沿海软土地区好的基础设计形式,桩设计承载力和施工成桩质量均好控制,对于沉管桩较能保证质量的桩长范围为Φ400mm在16m以内,Φ500mm在18m以内较合适,桩距最好在4d左右。
地基基础论文第6篇
2预算人员必须非常了解地基基础工程施工各个项目的所有工作内容,其目的是为了在计算工程量及企业施工成本的过程中不漏项,给最终的报价提供一个最准确的基数。如连续墙施工,其工作内容包含有:导墙土方开挖外运及回填,导墙模板的制安与拆除、导墙钢筋制安、导墙混凝土浇注;连续墙的成槽(分入岩部分和非入岩部分)、钢筋笼的制作与安装、连续墙混凝土浇注等。
3对其施工内容有了充分了解后,接下来就是收集本次投标报价工程中有关的工程地质勘察资料,施工***纸及相关的其他资料(如地下管线布置***等)。收集这些资料的目的是为了计算本次投标项目具体准确的工程量并初步了解该工程施工过程中有哪些风险因素。在计算工程量的过程中,值得一提的是特别要注意那些发包方规定了结算时,不给予计量的项目的工程量千万别漏项,因为这些工作内容的成本都需要摊销到发包方规定结算计量的相应项目中的。如在广州越秀南路综合楼基坑支护中结算给予计量的连续墙工程量为2032m3,但要完成该连续墙工作,会发生但不计量的工作内容还有:导墙土方开挖外运185m3及挖填340m3,导墙模板的制安与拆除1137m2、导墙钢筋制安1.787t、导墙混凝土浇注135m3;连续墙墙顶80cm高的浮浆101m3;连续墙、钻孔桩的钢筋笼重量243.84t;连续墙成槽入岩的工程量108m3。在计算工程量的过程中,还要根据资料,初步了解该工程在施工过程中是否有流沙、溶洞等地质风险,是否有管线阻碍施工的顺利进行,如果有,则要将这些风险罗列出来。
4按发包方的计量要求,计算出满足发包方计量要求的计量项目的“综合”施工成本。在这个套价的过程中,一定要思路清晰,否则,很容易出错。要计算出这样的一个“综合”成本单价,有以下两个步骤:首先根据各个工作内容的工程量及预算员自己编制的企业基础定额及人材机的市场信息价,计算出各工作内容的成本价,并得出各工作内容的总成本,如广州越秀南路连续墙的各个工作内容总成本计算应该如下:
①导墙土方开挖外运总成本=185m3×导墙土方开挖外运企业成本价;②导墙土方挖填总成本=340m3×导墙土方挖填企业成本价;③导墙模板的制安与拆除总成本=1137m2×导墙模板的制安与拆除企业成本价;④导墙钢筋制安总成本=1.787t×导墙模板的制安与拆除企业成本价+1.787t×钢材材料企业内部消耗系数1.01×钢材市场信息价;⑤导墙混凝土浇注总成本=135m3×导墙混凝土浇注企业成本价+135m3×混凝土材料企业内部消耗系数1.01×混凝土市场信息价;⑥连续墙的成槽总成本=(2032m3+101m3)×连续墙的成槽不入岩成本价+108m3×连续墙的成槽入岩增加费成本;⑦墙身钢筋笼的制安总成本=243.84t×墙身钢筋笼的制安成本价+243.84t×钢材材料企业内部消耗系数1.03×钢材市场信息价;⑧连续墙混凝土浇注总成本=(2032m3+101m3)×连续墙混凝土浇注成本价+(2032m3+101m3)×混凝土材料企业内部消耗系数1.1~1.15×混凝土市场信息价。
其次就是将给予计量的每个项目相关的全部工作内容的总成本汇总并摊销到该计量项目中,得出结算计量项目的“综合”成本单价。如广州越秀南路综合楼基坑支护中连续墙的“综合”成本单价就应该是将第一步骤中计算的各个工作内容总成本摊销到给予计量的连续墙工作量2032m3所得出的单价,具体计算如下:
连续墙“综合”成本单价=∑(①~⑧)/(2032m3)。
5向决策者提供计算准确的“综合”施工成本及施工过程中的风险因素,决策者根据预算员提供的数据,结合经营的需要等,综合考虑,最终确定自己企业的报价。因为决策者的决策依据完全靠预算员提供,这就要求预算人员要有过硬的专业基本功,并具备良好的职业道德。
只要做好了这几个步骤,那么施工单位在报价与之后的谈判过程中都握有主动权,能正确确定工程项目施工承包价格,有效控制工程成本,合理利用资金,提高承揽质量,使工程达到技术上的先进和经济上的合理
地基基础论文第7篇
基础设施建设滞后延缓了西部经济的发展,成为西部大开发的瓶颈。我们要充分认识基础设施建设在西部开发中的作用,并加大投入力度,加快西部基础设施建设的步伐。但这只是问题的一个方面,另一方面基础设施建设在速度上不是越快越好,在规模上不是越大越好,而是要同经济发展相协调,并考虑投资的经济效益和社会效益,实现协调发展。当前西部大开发中基础设施的建设存在着双重的问题:既滞后,又盲目上马、重复建设。因此,我们要在基础设施建设过程中总揽全局,协调发展。
(一)加快西部地区基础设施建设应理顺的关系
针对西部大开发中基础设施建设方面已出现的争投资、争项目,盲目上马,重复建设的一些情况,必须加强宏观引导,实施科学管理。当前要正确处理以下六对关系:
1.基础设施建设与经济发展的关系。基础设施是经济发展的前提条件,促进经济发展是基础设施建设的目的,不能将二者本末倒置,而要协调发展,基础设施建设规模既不能滞后于经济发展,也不能超越经济发展的客观要求。但目前西部地区基础设施的发展和经济的发展水平出现了非对称格局,一方面是原有的基础设施的水平不能适应经济发展的要求,成为经济发展的瓶颈;另一方面是西部大开发中在基础设施建设上有些地方又出现了盲目上马的过热现象,如车流量小、经济落后的地区热衷于建高速公路。因此建议:(1)有关部门对基础设施建设项目要进行充分论证,使基础设施建设在速度、效益、规模上同经济发展的速度、效益、规模相协调;(2)完善项目审批手续,合理把关,科学管理,基础设施的建设不应成为***绩工程,而应切实为经济、社会发展创造条件。
2.基础设施建设中的经济效益与社会效益的关系。要同时兼顾经济效益与社会效益,既要防止在基础设施建设中片面追求社会效益而忽视经济效益的倾向,也要防止相反的倾向。当前西部地区在基础设施建设中存在着相反的两种倾向:一是在项目论证中存在着忽视经济效益的倾向;二是在实际运营中存在着过分地追求经济效益的倾向。如高速公路在论证时多从社会效益角度考虑,即使车流量少、经济落后的地区仍然上马,但一旦投入运营就追求投资效益,提高收费标准。由于收费标准提高,导致了高速公路的车流量减少,投资回收期延长,而为了缩短回收期,再提高收费标准,结果造成了一种恶性循环。为此建议:(1)在项目论证时,除***事等涉及到国家安全的特殊基建项目外,各种基础设施项目都要充分考虑经济效益,即使公益性项目也要考虑经济效益,否则会变为“公害项目”。要计算出投资回报率和投资回收期。(2)基础设施的收费标准调整要依据《价格法》,经过价格听证会的论证,兼顾基础设施提供者和消费者的利益,并充分考虑低收入群体的承受力。
3.已建项目与拟建项目的关系。一是要考虑二者的协调发展问题,拟建项目要与已建项目相配套;二是要考虑在充分利用己建项目的基础上,上马拟建项目。当前在西部地区存在着已建项目未充分利用,又盲目上新项目的现象。如有些地方已建的机场未充分发挥作用,又新建机场;有的地方高速公路的密度大,利用率小。为此建议:(1)建立健全基础设施效益评估制度,对已建项目的利用程度进行评估,在此基础上考虑新建项目;(2)建立基础设施建设协调机构,加强规划与协调,统一决策,改变目前***各部委、省市各厅局分头决策和多头管理带来的弊端。
4.基础设施建设内部各类项目之间的关系。既要协调基础设施中的硬件项目水电路、邮***电信与软件项目文化、教育、卫生之间的比例关系,又要协调城市基础设施建设项目和农村基础设施建设项目建设的关系,同时还不能忽视公益性环境治理方面的基础设施建设。当前西部地区在基础设施建设中存在着重硬件轻软件、重城市轻农村的现象。为此建议:(1)建立基础设施项目体系制度,从总体上把握各类项目之间的内在比例关系,实行科学管理;(2)拓宽基础设施建设范畴,明确将西部地区的教育、文化、卫生、农村基础设施、环境治理以及其他公益性项目列入基础设施重点建设的范畴,加大投资力度。
5.基础设施建设中各投资主体之间的关系。基础设施建设投资主体应多元化,同时应协调好各投资主体之间的关系。但目前存在着“三多三少”现象:***府投资多,民间投资少;中央***府投资多,地方***府投资少;内商投资多,外商投资少。因此建议在基础设施建设主体方面加大“三个比重”:(1)划分***府与民间的投资范围,加大民间投入的比重;(2)划分中央***府与地方***府的投资范围,加大地方***府的投入比重;(3)划分内资与外资的投资范围,加大外资投入的比重。
6.基础设施建设中重点与一般投资领域之间的关系。在基础设施的建设上,必须处理好重点与一般,近期与长期的关系。在近期基础设施建设的重点领域应包括:(1)水电路:水资源开发、水利设施及江河湖海的治理,电网、邮电通信、广播电视,公路(含高速公路)、铁路、机场、航空港、海港与码头:(2)教育、文化、卫生设施重点项目;(3)农村基础设施、农田草牧场、生态环境项目;(4)城市设施建设、开发区建设;(5)原油、天然气、核电等能源开发项目;(6)饮水工程、天然气管道、污水与垃圾处理、绿化、美化等公益性项目。
(二)加快西部地区基础设施建设的对策
1.加大国家对西部地区基础设施建设的投资力度。西部大开发,基础设施建设必须先行。但西部地区由于自身条件较差、实力薄弱、历史欠账较多,仅仅依靠民间的资本和西部地方***府没有实力解决这一问题,因而重大基础设施建设项目必须主要依靠国家投资来完成。国家在西部地区基础设施建设的重点投资领域应包括:跨省际的公路、铁路干线;大江大河的治理及重大水利工程和饮水工程;邮电、通信、广播、电视等信息基础设施建设中的骨干通道;非盈利、非商业性开发与经营的重大公益项目;生态环境治理重点项目;重点机场和口岸建设。
2.积极推进基础设施投资主体的多元化。(1)根据陕西的成功经验,对部分基础设施实行股份化集资,商业化运营。既拓宽资金来源,也提高运营效率,减轻***府负担;(2)鼓励地方集资搞基础设施建设,如地方铁路、公路、机场建设等;(3)放宽外资的准入条件,采取优惠***策,在基础设施建设中更多地引进外资。
3.合理运用经济杠杆促进基础设施建设。一是适当调整盈利性基础设施的收费标准。基础设施中盈利性项目收费标准低,影响了地方与民间投资的积极性。在充分调查研究的基础上,经价格听证会的论证,对其中的一部分提高收费标准。二是推进基础设施资本市场建设,如设立西部地区基础设施投资基金、发行基础设施建设债券、加快基础设施行业企业的上市。
4.进一步完善价格运行机制,采用支持性价格***策筹集建设资金。一是继续允许西部地区修建二级收费公路,鼓励外资和社会资金投入西部公路建设;二是在西部地区基础设施建设中,扩大以收费权为核心的经营权质押***策的实施范围,鼓励外资和社会资金投向西部地区;三是积极疏导西部电网电价矛盾,鼓励对西部的电力投资;单独核定西部地区各电网输配电费用,鼓励电力生产企业与用户直接签订购电合同,降低用户电费负担,适当降低东西部地区之间骨干电网联络线的输电费用,鼓励“西电东送”;四是对新建的水利工程供水项目,实行补偿成本、合理回报的水价***策;五是对没有征收污水处理费的西部地区城市,要求尽快开征污水处理费,对已经开征的城市,要求进一步提高污水处理费标准,尽快达到补偿合理成本略有盈利水平。
5.坚决贯彻和落实“受益者负担、投资者受益”的原则。把中央***府、地方***府、企业在基础设施建设上的责、权、利相结合,调动各方面的积极性。一方面中央***府将适当放宽限制,允许外资和私人投资开发原材料和能源,特别是鼓励他们加快西北能源重化工基地的开发建设;另一方面国家将重点矿藏资源划定保护范围,将那些保护范围之外的矿产资源的开发经营权下放地方,调动地方***府和群众的积极性。
【参考文献】
[1]杨萌凯:解决西部交通建设落后的途径[J].《西部大开发》,2001(11),P44-46。
[2]谢晚霞:西部地区基础设施状况分析[J].《中国工业经济》,2001(10),P60-64页。
[3]胡鞍钢:地区与发展:西部开发新战略[M].北京,中国计划出版社2001(2)。