数学数学论文第1篇
【关键词】数学文化;数学教学;内容;方式
一、前 言
传统数学教学常常只将重点放在知识与技能的传授方面,而在培养学生对数学这一门学科的文化内涵、思想体系的认识上往往重视不够.这种教学的结果常常使学生感到枯燥无味而失去学习数学课程的热情与兴趣.而且,随着人们文化水平的不断提高与对数学文化知识重要性的不断了解,其巨大的教育价值更加受到教育工作者的重视.
数学课程应该是数学历史及发展趋势以及对人类文明发展作用的反映.张奠宙教授曾强调,数学文化应当与数学教学相结合,使学生在实际教学中真正感受数学文化并与之产生共鸣.在推崇综合发展、文理交融的现代社会,我们更要转变教学观念,将数学文化与大学数学教学很好地结合在一起.
二、数学文化内涵及其对高等数学教学的重要性
“部级教学名师”、南开大学数学科学院院长顾沛教授对数学文化内涵的定义分为:数学文化从狭义来讲,指的是数学思想、方法、精神、语言、观点及其形成与发展;从广义上来讲,还包括数学美、数学史、数学与人文的交叉、数学教育、数学与其他文化的关系.大学数学教学的目的不仅是向学生传授知识,更应当培养学生适应社会发展所必需的判断力、理解力以及解决实际问题的能力,最大可能地激发学生的创造力.所以,现代大学数学教学应将更多的精力倾注在学生数学能力的培养上,而这个目标的实现就是要将数学文化与数学教学有机结合起来.
三、如何将数学文化与数学教学有效相结合
1.更新教师教育观念,提高其文化素养
教师更新数学教学观念,提高自身文化素养,是传授数学文化学生的前提条件.现代的大学教师不仅要专业知识扎实,而且要知识面足够宽广,对数学哲学、数学史等方面的基本知识足够熟悉,掌握高等数学的历史背景、发展现状、应用价值与前景,并能将课程知识与这些知识很好地融合后再传授给学生.具体来说,应做好以下几方面的工作.
首先,教师应深入钻研教材,合理组织教学,加强与其他专业老师的合作.由于所有教材都有其缺点,因此在备课过程中教师应尽可能地参考多种教材,选择优秀部分进行教学.由于所教学生的专业不同,特点也不同,大学数学教师在教学时就应当根据学生的专业选择内容,根据专业需要的内容进行细讲,而那些用不到的知识就可粗讲甚至忽略.比如傅里叶级数这部分知识对计算机专业学生的专业知识学习比较重要,因此应进行重点讲解;在讲解重点内容时,还可以将人多的大课堂分成小班教学,并依据学生的基础不同进行合理教学,使所有学生都能很好地学到知识.
其次,教师间也要重视对教学思路的探讨,在进行教学内容顺序的安排时,既要遵循由浅入深、从特例引出一般的原则,又要具体情况具体分析.比如,由于微分与定积分、不定积分联系非常密切,因此可以将定积分与不定积分合为一章,先讲解定积分概念和性质,然后依据微积分基本定理,建立定积分与不定积分(原函数)之间的联系,最后讲解基本积分法,这样安排既方便学生理解,还能突出重点.
2.优化课堂教学内容
第一,以数学内容自身作为出发点,体现其文化价值.大学数学教育的最高境界是培养学生的理性精神.严谨规范的数学知识,有益于学生形成团结协作、踏实细微、严肃认真的作风.数学中的常量与变量、有限与无限、微分与积分等都是量变与质变、对立统一等辩证唯物主义的极好的教学材料,有助于学生形成科学的方***与世界观.
第二,让学生多了解数学家的事迹与思维过程,以及数学的有关史料和应用前景,使学生从中认识到所有科学都是经过认识与再认识、成功与失败的循环往复才不断发展的,科学上每一个小进步都是科学家不懈努力、刻苦钻研的结果,这将很好地调动学生学习数学的非智力因素.以我国数学家陈景润为例,他学习的条件极端艰苦,但是仍然热爱痴迷于数学,坚持不懈地进行数学研究,最终攻克“哥德巴赫猜想”这一世界著名难题.通过这一事例必将激发学生热爱数学和献身数学的精神.
第三,数学课程还应重视数学史料的教学,反映出数学文化的方法、思想、精神、语言、工具的作用,强调数学内容与日常工作生活相结合,突出思想方法与生活紧密联系的原则,增加统计、估算、线性规则、数据分析、运筹、***论等知识,提高学生学好数学的自信心与自觉性.
3.注重改变学生学习方式
数学教学的最终目的是使学生掌握独自学习的本领,而加强数学文化的教学能够很好地提高学生的自学能力.一方面,引导学生多接触和阅读有关的论文与文化书籍,使学生首先对数学知识的发展与应用过程有一定了解,进而更深刻地理解数学知识的意义,这样在增加学生知识面的同时又使其学会了一定的自学方法.另一方面,增设一些活动课与探讨课,鼓励学生积极走入社会,具体实践过程可采用“提出问题建模求解应用”的模式.鼓励他们合作交流与自主探索,增强他们学好数学的决心与愿望,提高他们应用数学知识的能力与意识,认真体会到不同知识的联系,得出研究问题的科学方法与宝贵经验.
四、总 结
现代的大学数学教学,应当是传授数学技能、知识与加强文化熏陶相结合,这样的教育方式才能使学生喜欢数学,更加理解数学,掌握数学的精髓,从而终身受益.而作为教书育人的高校数学教师,要不断提高自己的文化素养,更深层次地研究大学数学教学与数学文化的联系,在数学教学过程中使学生真正感受数学文化的魅力.
【参考文献】
数学数学论文第2篇
文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。
东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行***人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是***队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。
东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”***策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。
在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉***以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的***队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是,但起源是商业文化。即使是也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天***二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天***与二进制算术的一致”⑧。二进制和先天***没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分***是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。
总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。
参考文献:
①张立文等《传统文化与现代化》,中国人民大学出版社。
②钱宝琮《中国数学史》,科学出版社。
③(英)李约瑟《中国科学技术史》,科学出版社。
④⑤⑥(美)H·伊夫斯《数学史概论》,山西人民出版社。
数学数学论文第3篇
1.培养学生数学建模能力是培养创新型人才的需要
创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一。大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。
2.数学教学中渗透数学建模
思想是大学数学教学改革的必然要求。目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。
3.数学建模有助于提高学生的多方面能力
数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。
二、大学数学教学中渗透数学建模思想的主要措施
在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学改革要求和人才培养目标。
1.从教学内容上改进
以促进数学建模思想的普及和深入。科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。
(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。通过增加这样的教学内容,使学生真切感受到数学知识的应用过程,并学会用数学思维解决实际问题。
(2)不能忽视数学实验课在大学数学教学中的重要作用。通过增加实验课的教学,来增强学生的数学建模能力、数学实践能力和基本数学运算能力。例如,教师可以在教会学生数学理论算法的同时,结合数学建模的教学案例用Mathematica或Matlab数学软件进行相应的数学运算和***形绘制。
(3)为了加强学生在数学应用环节的实践,更好地普及数学建模的思想,我们举办了不同形式的课外实践活动。其中实施效果比较好的有:开设数学建模和数学实验公共选修课,开设数学建模兴趣小组讨论班,成立数学建模协会,开展数学建模校内竞赛等。
2.从教学方法和教学手段上改进
实现数学理论知识与数学建模思想的良好结合。将数学建模思想融入大学数学教学中,就要在教学中努力打破传统的教学方法和教学手段,实现教学观念由“以教师为中心,讲授为主”向“以学生为主体,主动探索”的转变,教学目的由“传授知识”向“培养能力”的转变,授课方式由“单一型”向“多样化”的转变。主要体现以下几个方面:
(1)教学过程中以学生为主体,有意识地引导学生发现问题、探索问题、解决问题。如在数学定理、公式的讲解中,教师可以先不给出结论,而是以问题为出发点,引导学生自行观察、分析、猜想、探索、归纳,以协作的方式解决问题,最终实现学生学以致用的教学目的。
(2)多采用案例教学,以实际问题引出概念,让概念结合实际。教师在课堂教学时,精选出源于实际问题的典型案例,让学生亲身体验用数学思想方法解决实际问题的过程。例如,在引入定积分定义时,可以先提出问题“怎样计算变速直线运动的路程”,然后引导学生建立模型,解决问题,同时引出定积分的概念,给学生归纳出“大化小,常代变,近似和,取极限”的思想,并告诉学生利用这种思想还可以去解决其他问题,也就是定积分的应用,如计算不规则的平面***形的面积、旋转体的体积等。
(3)由于教学学时有限,为了提高教学效率,在教学时需做到现代多媒体教学手段与传统板书教学的有机结合,取长补短。例如,在讲解空间曲线的***形、二次曲面相交得到的立体***形等内容时,使用PowerPoint课件讲解不仅大大提高课堂教学效率,而且内容会更生动逼真。
3.考核评价方式的改进是推动这种教学模式改革的重要环节
也是增强学生数学应用意识的有效途径。传统的考试方法一般都是闭卷考试,考试侧重理论知识的考查,并且以学生成绩的高低来衡量学生数学水平的好坏。这种考试制度已经不能顺应大学数学教学改革的要求,改革的主要目的是培养学生创新能力和数学知识应用能力,因此,考试方法也应由单一的闭卷形式转化为多样化形式。具体措施:
(1)为了考查学生各方面的综合能力,试卷中除了基础理论知识的考查外,还要适当增加实际应用题和小型开放题的题量。
数学数学论文第4篇
关键词:数学文化;数学学习;文化认知
《全日制义务教育数学课程标准(实验稿)》在基本理念中充分肯定了数学的文化价值,特别是在“课程实施建议”的“教材编写建议”中指出,教材可以在适当的地方介绍有关的数学背景知识(数学家的故事、数学趣闻与数学史料)。而《普通高中数学课程标准(实验)》则进一步强调:“数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对‘数学文化’的学习要求,设立‘数学史选讲’等专题。”可见,数学文化已逐步从理念走进中小学数学课堂。如何使数学文化真正走进数学课堂,一个比较现实的做法是使之融入到数学学习之中。这不仅要重视数学学科本身的文化价值,还要探讨学生的文化认知特点,对文化、数学、学习三者之间的内在联系做深入的考察。
一、高中学生的文化认知特点
根据维果茨基的“文化发展的一般发生学原理”:儿童的文化发展所有机能出现两次或两个层面,先是社会层面,接着是心理层面。首先它作为心理间的范畴出现在人们之间,然后作为心理内的范畴进入儿童中。[1]可见,从文化的视角剖析数学学习,至少要采用社会学和心理学的观点。
(一)同喻性
一个时代文化环境的形成离不开文化的传递机制。美国人类学家玛格丽特·米德从研究人类社会文化传递的差异出发,将人类的文化变迁划分为三个部分:后喻文化、同喻文化和前喻文化,其中同喻文化是指学习主要发生在同辈人之间,其基本特点是以当代流行的行为模式作为自己的行为准则。今天的高中学生带有同喻文化的特征。
高中学生的同伴影响逐步扩大。我国绝大部分高中学生是独生子女,在家里缺乏可以沟通的兄弟姐妹。而在多数中学,一个班级通常有四五十人之多。家庭和学校之间存在着的差异使他们更倾向于在学校群体生活中表达和交流自己的思想,同龄人的观念、行为对他们产生较大的影响。
中学教师的长辈角色正在淡化。社会的迅猛发展,使教师再也无法通过施加压力来传播旧的文化观念,原来的自上而下的教育模式已失去了部分魅力,许多青年人通过自己摸索和感受萌生了前人未曾有过的想法和期望。特别是高中学生,由于知识的增长及心理的逐渐成熟,开始比较多地从个体存在与发展的角度来思考社会与人生,他们已经不可能也不必完全照搬前辈的经验去刻画自己的人生轨迹。那种后喻文化中说教式的思想教育方式,比以往更不容易为学生所接受。
作为文化的数学正以学生乐于认同的方式被传播。数学具备文化独有的特性:它是延续人类思想的一种工具,是描述世界***式的有力助手,精确的形式化、简洁的符号表征常常被成功地运用到其他科学领域。伴随着科学技术在社会生活领域的不断渗透,学生有更多的机会联系数学。在数学新课程背景下,一些密切联系学生生活的数学知识进入高中教材。网络技术的普及使学生得以快速了解大量知识。不断拓宽的信息通道,活泼平易的呈现方式,使数学有机会向学生展示它人文的一面。
(二)不均衡性
人的认知源于人与大自然、与社会和文化之间的相互作用,其发展又与个体内部的认知因素密切相关。由于学生的大量知识通过学校习得,他们的认知结构在相当程度上取决于学校所传授的知识内容及其形成过程。联系我国目前高中教育的实际情况,学生对“数学文化”的认知存在如下问题。
1.知识结构的不均衡造成学生对“数学”的文化感知产生偏差。学校的学科设置力求体现当代人类知识的主要特征,现代人类知识总体结构中,关于自然科学与技术科学的知识部门已大大超过了人文社会科学。人类6 000余种学科中,属于科技类的知识约占总数的。与之相应,我国普通高中课程虽然设置了***治、历史和地理,但在学校的地位却难以与数学、物理和化学等相比。如果高一阶段有若干可以机动安排的课时,学校更愿意留给数理化等学科。由此造成的一个突出现象是,文、理科学生人数的差距巨大,尤其是经济较为发达的地区,如浙江省的文科学生通常只占同年级人数的左右。人文知识与科学知识的不均衡,使学生文化素养不够全面,对待事物容易就事论事。有不少学生认为数学是确定的,数学问题有且只有一个答案,学校中学到的数学在现实生活中很少有价值。
2.组织结构的不均衡导致学生对“数学”的文化认同出现逆差。人们重视科技教育而忽视人文教育,“不只表现在教育规模、教育结构方面,更表现在课程与教学内容和教学方式方法方面,换句话说,科技文化统治着学校教育,科技知识、理性思维广泛而深入地影响和左右着学校教育教学过程”。[2]造成学生知识结构的组成方式不均衡。在中学界,几乎所有的教师和学生都相当重视数学,但他们对待数学的动机不同,其中不乏出于高考的压力。由此带来的负面影响是:教学中存在着重结果、重应用的现象,忽略数学知识形成和发展的过程,知识的生成是快速的,知识之间连接的链条被机械地焊接,知识的运用中充斥着大量的习题。在“现成的数学与做出来的数学”之间,很难将数学看成是人类的活动。学生数学“学”得越多,对文化的认同反而越少。
二、数学文化在高中数学学习中的表现形态
数学文化与数学学习融合的过程中,文化、数学、学习三者之间的内在关系必以某种形态表现出来,而这些表现形态又将决定我们采取相应的方式。在分析高中学生文化认知特点的基础上,笔者将从数学学习的“文化”特征、文化学习的“数学”课程以及数学文化的“学习”过程三个方面探讨数学文化在数学学习中的表现形态。
(一)群体的活动性
群体与活动是数学文化进入数学教育过程的直接表现。一旦我们以文化的理念开展数学教育,这种表现形态便应运而生。
其一,数学教育的文化观强调学生以活动的方式进行数学学习。
数学作为人们描述客观世界的一种量化模式,它当然是人类文化的一个组成部分。在承认这一“客观性”的基础上,相对于认识主体而言,数学对象终究不是物质世界中的真实存在,而是抽象思维的产物,它是一种人为约定的规则系统。可见,数学的文化观念不仅承认数学在科学技术方面的应用,还强调“人”在数学文化体系形成过程中的能动作用。美国文化学家克罗伯和克拉克洪在文化的界定中指出:“文化体系一方面可以看作是活动的产物,另一方面是进一步活动的决定因素。”这说明人的主观能动性主要表现在活动的参与中,通过活动,使知识学习与精神教化自然地结合起来。并且,数学文化的渗透性具有内在和外显两种方式,其内在方式表现在数学的理性精神对人类思维的深刻渗透力。因而,在数学教育中,教师应当尊重学生的主体地位,通过学生的主动参与,发挥数学在精神领域上的教育功效。
其二,文化意义上的数学教育提倡群体的交流与合作。
文化的概念始终与群体、传统等密切相关。在现代人类文化学的研究中,关于文化的一个较为流行的定义是:“由某种因素(居住地域、民族性、职业等)联系起来的各个群体所特有的行为、观念和态度等。”在现代社会中,数学家显然构成了一个特殊群体──数学共同体,在数学共同体内,每个数学家都必然地作为其中的一员从事自己的研究活动,从而也就必然地处在一定的数学传统之中,个人的数学创造最终必须接受社会的裁决。“只有为相应的社会共同体(即数学共同体)一致接受的数学概念才能真正成为数学的成分。”[3]文化意义上的数学正是关注到了数学与整体性文化环境的关系,数学“不应被等同于知识的简单汇集,而应主要地被看成人类的一种创造性活动,一种以‘数学共同体’为主体,并在一定环境中所从事的活动。”[4]
可见,一个富有生命力的数学知识,蕴涵着一定的“社会性”。教科书上貌似明了的叙述,其实是经过历史荡涤的精华,承载着复杂的文化背景。在学校教育的条件下,教师与学生自然构成了一个“数学学习共同体”,虽然他们未必能发明或创造出新的理论,但面对同一个数学问题,各成员有着不同的行为、观念和态度,这些差异常常在相同的时间聚集于同一个环境。鉴于高中学生文化认知的同喻性,某个学生的见解需要接受共同体的评价才能被承认,教师的教学内容同样需要经过共同体的认同才有可能真正被学生内化。因此,从文化的角度来看,学校中的数学学习实质上是一种微观的数学文化。
由于学生主要通过在教室中获得数学知识,所以,数学文化教育的中心场所应在教室。已有的国内外研究表明,教师和学生所具有的各种与数学教学直接相关的观点、信念等是影响数学教室文化的重要因素,彼此的数学交流与合作是构建教室文化的主体部分。近几年来,现代教育学正将这种相互交换想法的学习(即互惠性学习reciprocal learning)当做未来学习的模式,作为建构新的教室文化的指标。
(二)系统的开放性
群体的活动显然可以贴切地表现数学学习的“文化”特性,但这些活动始终在“数学”范畴内展开。我们有必要探究高中数学课程的特点。
从文化传承上看,高中数学课程具有组织构成的开放性,主要表现为它与社会生活及现代数学的动态联系。作为人类文化的一个子系统,数学并不是一个完全封闭的系统,外部力量对于数学发展也起着决定性作用。例如,二次世界大战就曾促进了系统分析、博弈论、运筹学和信息论等学科的研究。虽然高中数学课程有别于一般意义上的数学,出于教育的目的对数学知识进行了重新整合,但这种“教育加工”仍然要尽量地展示数学科学的原貌,以达到文化传承的目的。我们可以看到现代数学的一些分支等正逐步地进入高中教材。虽然外部力量对基础教育阶段的中学数学课程没有如此巨大的影响,但它们表明了数学的广泛应用价值,从而为高中数学课程结构的开放性给出了有力的证明。例如,教材中的有限与无限、随机与确定、结构与算法等都与现代科学技术有联系,而数列、线性规划等直接地涉及学生的社会生活。
从文化传播上看,高中数学课程具有观念整合的开放性,通过课程的活化促进文化增殖。数学课程中内容的选择、编写乃至实践,不可避免地受到各种社会、文化与观念等要素的影响,从而在传播的过程中产生文化的扩展和延伸。课程作为文化传播的一种手段,并不是简单地复制,更主要的是通过文化增殖起到一种强烈的活化作用。在中学阶段,虽然各位教师面对的是同一本教材,但教师总是要根据具体教学过程的需要进行具体的再加工,而这种加工的过程又必然会溶进每个教师特有的个性因素,渗透着教师本人的世界观,体现他的精神面貌并以此对学习者产生影响。同时,由于学生个体素质的多样性,即使是由同一位教师传递并且传递的文化实质完全相同,对每个学习者来说,文化信息的接受也存在着差异。[3]
从文化传递上看,高中数学课程具有整体效能的开放性,通过系统属性的联合作用,发挥出“整体大于部分和”的功效。在高中数学课程内部,各子系统既保持着纵向的知识序,又维系着横向的方法序。例如,从指数函数到对数函数,三角函数到反三角函数,这些知识被有序地排列着,它们之间借助反函数融为一体,利用数形结合的方法,生动地刻画出函数的性质。在其外部,高中数学课程以工具性学科的地位与其他中学“友邻”课程形成协同关系。“数学课程向‘友邻’课程提供知识和智能方面的储备工具,又从‘友邻’课程那里获得需求信息、实证材料、强化运用数学智能的场所。”[5]例如,函数与物理的势能、立体几何与化学的分子结构、排列组合与生物的基因分析、对称与语文的对偶等。
文化与课程的关系表明,高中数学课程是一个开放的文化体系。作为中学数学教师,要在教学中体现数学的文化价值,要对“数学”有正确的认识,那就是:是整体的数学,而不是分散、孤立的各个分支;是广泛应用的数学,而不仅是象牙塔里的严密体系;是与其他科学密切联系的数学,而不是纯而又纯的抽象理念。
(三)知识的默会性
对群体活动与数学课程的考察,有助于我们把握数学文化表现形态的总体脉络,但数学文化必须通过学习才能被学生领悟。由于文化由外显的和内隐的行为模式构成,作为文化的数学与作为科学的数学在学习过程中也有所不同。
科学的数学追求完全确定的知识、精确的运算与严密的推理,追求用简单且抽象的语言来描述客观世界的规律。在客观主义知识观、科学观的支配下,人们过多地强调知识的客观性、非个体性、完全的明确性等等,出现了“人的隐退”现象。
其实,知识并不是孤立的、静态的、纯形式逻辑的,而是常常与人休戚相关的。“自然科学与人文科学一样,充满着人性因素,科学实质上是一种人性化的科学。”[6]在国际哲学界以创立意会认知理论(Tacit Knowing)而闻名的英国物理化学家和哲学家波兰尼从“我们所知道的要比我们所能言传的多”出发,把人类的知识分为明言知识与默会知识。明言知识指以书面、***表和数学公式加以表述的知识,默会知识是指未被表述的、我们知道但难以言传的知识,例如,我们在做某事的行动中所拥有的知识。波兰尼认为:“在非言传的‘意会’认知层面,科学与人文是相通的。”[7]
既然这种默会知识藏于内心,无法用明确的规则来表达,那么该怎样学习传授呢?波兰尼指出:“通过了解同样活动的全过程,我们才能了解另一个人的内心东西。”基于高中学生的文化认知特点和数学学习的实际情况,我们可以通过以下方式突出数学知识中的“人性”。
1.客观对象“数学化”。弗赖登塔尔曾言:“我们的教育应当为青年人创造机会,让他们通过自己的活动来获得文化遗产。”对学生而言,“学一个活动的最好方法是做。”[8]通过“做”数学,“学生和学生之间的相互作用真实地反映了在数学课堂中形成的文化:具体的教师、具体的学生以及正在形成的具体的‘数学化’。”
2.数学解题“拟人化”。从文化的角度审视数学解题过程,它是策略创造与逻辑材料、技巧性与程式化的有机结合,是一个有序结构的统一体,它与数学的特征相一致,隐含着数学家的思维方式,从而使解题超越了数学思维活动本身的范围,进一步延伸到文化道德、思想修养的素质范畴。G·波利亚的《怎样解题》中包含了程序化的解题系统、启发式的过程分析、开放型的念头诱发及探索性的问题转换等,字里行间不时地涌现出诸如“如果你有一个念头,你是够幸运的了”“好的题目和某种蘑菇有点相似,它们都成串生长”“呆头呆脑地干等着某个念头的降临”这些平和的话语,使读者不知不觉间置身其中,一些解题外的感受也油然而生。优秀学生对解题感兴趣,更多时候像在做游戏,说明数学习题中蕴涵着很多人性化的品质──题中寻趣,在于换个角度看问题。
参考文献
[1]莱斯利·P·斯特弗,杰里·盖尔.教育中的建构主义[M].上海:华东师范大学出版社,2002.120.
[2]刘振天,杨雅文.当代知识发展的不平衡与教育的战略选择[J].现代大学教育,2001,(4):15.
[3]孙小礼,邓东皋.数学与文化[M].北京:北京大学出版社,1990.149.
[4]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2001.5.
[5]张永春.数学课程论[M].南宁:广西教育出版社,1996.184.
[6]钱振华.默会理论的SSK意蕴[J].自然辩证法研究,2003,(9):32.
数学数学论文第5篇
寒假,我参加了数学兴趣班,教我们的是一位年轻漂亮的女老师——陈老师。
陈老师教我们的第一节课很独特,首先她问我们的第一个问题是:“数学是什么?”,这个问题虽然简单,但是却充满着奥秘,我回答不出来,但是也有很多同学踊跃举手回答问题“数学是生活中经常运用的知识”“数学是我们思维的一种表达方式。”“数学是……”陈老师似乎比较满意,说:“同学们的回答很精彩,但是,还不完全正确,数学是研究数量、结构、变化以及空间模型等概念额一门学科。通过抽象画和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生……”
陈老师告诉我们的是数学,数学存在的意义,她说,数学不是烦躁的拼命做练习,而是锻炼我们的思维,使我们的思维越来越强,使我们对于某一件事时,可以迅速的判断。数学是一门学科,如果你对数学有兴趣,那么你的思维已经很强了。
没错,通过陈老师的教导,我们已经渐渐懂得数学的含义,数学题目中,也许有些很难,但是每解一道题,就能锻炼我们的思维。比如,陈老师让我们花半个小时去做一道题,这道题是一道初三的题目,即使你会做,也要做到半小时:
某同学在A、B两家超市发现他看中的随身听的价钱相同,书包单价也相同。随身听和书包单价之和为452元,且随身听的单价比书包的单价的4倍少8元。
数学数学论文第6篇
当前,高中数学教学中,仍把数学的形式化、逻辑性视为教学重点,忽视对数学的人文价值方面的挖掘与运用,数学文化在高中数学教学中出现偏差,主要表现为以下几个方面:
(一)教学目标形式化,缺乏对数学文化的准确定位
在实际教学中,教师只将数学知识作为目标,不能结合数学文化来设定教学目标,只关注课本上的数学知识,特别是一些公式、定理的应用,过于工具性,没有把数学的知识与数学的人文相融合作为教育的首要目标,不能很好地了解和运用数学的思想、方法、精神等人文价值,弱化了学生数学素养的培养。
(二)教学方法落后,缺乏多样化的教学方式
长久以来,课堂教学以教师为中心,教学没有活力与生机,无法兼顾到个别学生的需要,难以进行师生互动,也不能让学生进行探究和合作学习,使学生的探究精神、合作意识、创新意识和动手实践能力受到捆绑,难以发挥其主动性。数学文化得不到全面体现,很难激发学生的学习兴趣,甚至产生厌学情绪。
(三)教学评价简单化,缺乏对数学文化的考量
教学评价能够根据教学行为形成量化的考评结果,从而给出相应的教学指导意见。传统的数学教学评价不太重视具体学习过程,不能反映学生的心理过程和变化,更无法体现学生的人文素养的提高。而现实数学教学中,很多教师仍然沿用传统的数学教学评价方式,不能从数学文化方面入手,不能凸显数学的人文价值。
二、数学文化与高中数学教学结合在一起的方法
数学教育必须以提高学生能力为目标:第一,是理解能力;第二,是学习能力;第三,是判断能力;第四,是解决问题能力;第五,是创造能力。具体内容包括:
(一)做好文化取向是奠定数学文化的重要基础
站在文化取向的角度来看,数学教学的主要目的是利用数学文化完成对学生知识的提升,所以,将数学文化与教学结合在一起,不仅是考虑到教学安排,同时还考虑到整体目标计划。对于数学文化教学主要围绕以下几个方面开展:第一,是数学意识;第二,是数学思想;第三,是数学精神;第四,是数学品质。
(二)以教育理念为指导,构建新型的高中教学思想
过去一段时间里,大部分教学都将教学重点放在了知识的学习,而忽略了教学的逻辑性和思维性。将数学文化与实际教学内容结合一起,与实际生活融合在一起,使学生产生学习数学的兴趣。学习的过程中,正确引导学生掌握学习方法,鼓励学生积极参加不同形式的教学活动,在活动中历练,不仅掌握知识,还学会团结合作。
(三)以学生的需求为指导构建多元化的教学体系
在整个教学过程中,数学教育是以多元的姿态出现的,因此,对于数学文化学习来讲,不仅要培养内涵,同时还要注意培养学习方法。在高中数学教材中,数学文化的定义学生是不能直观看到的,它是在不断学习中体现出来的。对于数学文化来讲,它不仅是内容丰富多样,同时学习方法也是渠道甚广,既包括了一些隐性的理论教学,同时也可以将整个学习态度直接展现出来,尤其是对学生学习数学的兴趣来讲,更能体现出其潜在的意义。在教学过程中将数学文化融入进去,通过教师生动,简洁的文字叙述,不仅能够使学生将注意力转移到学习上来,同时也可以提升其它知识学习,不仅提升了学生学习成绩,同时也促进了他们对数学的认知度和兴趣度。
(四)实现文化教学,提高高中数学的影响力
“数学文化”作为文化的一个重要组成成分。它的内涵丰富多彩,所以应采取更多、更灵活的教学方式,教师可根据教学内容和个人的教学风格进行选择,要注意教学的深入浅出,尽可能对有关内容作形象化的处理。强调数学非形式化的一面,弘扬数学的人文精神,除了知识的学习外,更应强调数学的思维方式、理性精神及数学在实际生活的应用。将课堂教学与课外指导相结合,让学生到生活中去寻找所需的素材和资料,以此有效的培养学生的动手和实践能力,促进其情感、态度、价值观的发展。
(五)构建先进的教学评价体制
数学数学论文第7篇
说起数学文化,我们自然会联想到数学史,数学史是数学文化的主要载体。人类文明已有几千年的历史,积淀下了厚实的数学文化,这些宝贵的财富,理应成为我们的教学资源,成为学生数学素养中不可或缺的一部分。例如,在数学活动课上,可以讲述古今中外数学家的童年故事或举办数学家故事演讲比赛,让学生从中感受到数学的兴趣和快乐,领略数学家独特的思维方式,体验数学家成长所付出的艰辛和努力,从而给学生树立学习榜样,确定奋斗目标。还可以组织学生玩24点和七巧板等游戏,向学生介绍九连环、华容道等中国传统智力玩具,引导学生探究九连环的规律和不同阵式华容道的解法。根据学生掌握数学知识的程度,也可以适当地向学生介绍中外数学史上的一些名题,如中外数学家解决“幻方”的不同策略;斐波那契的“兔子问题”;牛顿的“牛吃草问题”,等等。这些数学史名题,因其精妙的解题思想与策略,展现了数学的无穷魅力,深深地吸引了学生,启迪着他们的心智,激荡着他们的心灵。适时将数学史引入课堂,将数学教学融入数学文化发展的大背景下进行,让学生在学习数学的过程中真正受到文化感染,产生文化共鸣,体会到数学的文化品位,使我们的数学课堂因为文化的底蕴而鲜活生动,充满生命活力。
二、让数学与文学有机结合,丰富数学文化内涵
数学与文学的结合,一开始就水融。“循环小数”也好,“纳税”也好,文学所特有的直观、形象、表象丰富、意境悠长的特点,将数学知识阐释得生动而风趣,给孩子们留下了深刻的印象。学习圆,就想起了墨子说的“圆,一中同长也”,想起“圆”的“匀称而和谐,端庄而高雅,流畅而饱满”,那样,学生心中的“圆”,就会是一个丰满而深厚的意象,由此又会激起他多方探究寻根的兴趣。文学在数学课堂教学中,可作为、能作为的实在是很多。把数学融入语言中,就是数学的一种文化表现形式。“不管三七二十一”涉及乘法口诀,“三下五除二就把它解决了”则是算盘口诀。此外,“指数爆炸”“直线上升”等已经成为人们的日常语言。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。数学和文学的相辅相成,相融相洽,早已有之。数学中的“对称”和文学中“对仗”,思考方法是相通的。徐利治先生把“孤帆远影碧空尽”当做极限概念的意境,陈子昂的“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下”就是一维时间和三维空间的结合,等等。数学把人生感受精确化、形式化,而文学的形象化又丰富了我们的想象,补充了我们的数学理解。因此,我们要博古通今,厚积人文底蕰,让我们在数学课堂上,旁征博引,游刃有余,让我们的数学课堂丰富而又灵动,让孩子们浸润在数学文学的共同滋养中,发展得生动而又灵秀。
三、重视学生思维能力的培养,体现数学的内在魅力