摘要: 针对障碍期权的定价问题,建立具有随机波动率和有交易费用的障碍期权的定价模型。在无套利定价原则和风险中性定价原则下推导出期权价格方程。采用有限差分法求解该方程,获得了期权价格的数值解。并通过数值试验的方法分析和讨论了模型中部分参数对期权价格的影响。
Abstract: In view of the problem of pricing barrier option, the model is established under the condition of stochastic volatility and transaction cost. Under the principle of no arbitrage pricing and the principle of risk neutral pricing, the price equation of option is derived. The finite difference method for solving the equation is given, and the numerical solution of the option price is obtained. And the influence of some parameters on the option price is analyzed and discussed by numerical experiments.
关键词: 随机波动率;自由边界;有限差分;美式期权
Key words: stochastic volatility;free boundary;finite difference;American options
中***分类号:F224;F830.7 文献标识码:A 文章编号:1006-4311(2016)07-0045-03
0 引言
期权是市场上最受欢迎的金融衍生工具之一,具有良好的规避风险的功能。期权的定价问题已逐渐成为金融数学领域研究的热点问题之一,近年来已取得一些研究成果。文献[1]利用C-N格式的有限差分方法求解障碍期权价格满足的偏微分方程,得到了期权价格。文献[2]给出了股指期货障碍期权价值的B-S公式,并讨论了解法。文献[3]采用一种高阶隐式有限差分方法用于求解障碍期权定价问题。文献[4]分别建立了离散型和连续型上涨出局期权的定价模型,并给出求解该模型的线性逼近方法。文献[5]通过求解微分方程获得下降敲出期权和上升敲出期权的解析定价公式。文献[6]在跳跃扩散模型下使用总体最小二乘蒙特卡罗模拟方法对美式障碍期权定价问题进行了研究。文献[7]证明了指数障碍期权的抛物型方程问题存在唯一解.目前,对障碍期权定价的研究大多都是在波动率为常数的条件下进行的。然而,在实际金融市场中标的股票的波动率会随时间发生变化。鉴于此,本文考虑更符合市场规律的障碍期权定价问题,在文献[4]和[7]的基础上,建立基于随机波动率的障碍期权定价模型,并给出数值解法。
1 随机波动率模型
4 数值试验
5 结束语
本文考虑带有Heston随机波动率模型的障碍期权的定价问题,给出了求解期权定价方程的数值方法,获得了期权价格的数值解,并对期权价格的影响因素做了讨论和分析。然而,针对基于随机波动率的期权定价的研究不限于此,如多资产障碍期权的定价问题等仍有待研究。
参考文献:
[1]M. Yousuf. Efficient smoothing of Crank-Nicolson method for pricing barrier options under stochastic volatility [J]. Proceedings in Applied Mathematics and Mechanics,2008,7:1101-1102.
[2]徐腾飞,曹小龙,胡云姣.离散障碍期权定价的蒙特卡罗模拟[J].北京化工大学学报(自然科学版),2013,40(3):123-127.
[3]J. C. Ndogmo, D. B. Ntwiga. High-order accurate implicit methods for barrier option pricing [J]. Applied Mathematics and Computation,2011,218:2210-2224.
[4]Carl Chiarella,Boda Kang,et al. The evaluation of barrier option prices under stochastic volatility [J]. Computers and Mathematics with Applications,2012,64:2034-2048.
[5]孙玉东,师义民,吴敏.参数依赖股票价格情形下的障碍期权定价[J].数学物理学报,2013,33(5):912-925.
[6]张利花,张卫国,许文坤.美式障碍期权定价的总体最小二乘模拟蒙特卡罗模拟方法[J].数理统计与管理,2013,32(5):923-929.
[7]Dong Yan. Existence and Uniqueness of parabolic problem arising in exponential double barrier option [J].Journal of quantitative economics,2013,30(1):82-88.
[8]S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. Review of Financial Studies,1993,6(2):327-343.
[9]李建辉,贺兴时,杨睿通.有交易费用和红利的美式期权的紧差分逼近[J].西安工程大学学报,2012,26(5):667-671.
[10]Black,F. and M. Scholes. The Valuation of Option Contracts and a Test of Market Efficiency [J]. Journal of Finance,1972,27:399-417.
[11]Arun Chockalingam,Kumar Muthura-man. An approximate moving boundary method for American option pricing [J]. European Journal of Operational Research,2015,240(2):431-438.
[12]K. J. in’t Hout S. Foulon. ADI finite difference schemes for option pricing in the Hestonmodel with correlation,Int. J. Number. Anal. Mod,2010,7:303-320.
转载请注明出处学文网 » 随机波动率下的障碍期权定价