摘要:基于PLC控制的机械手具有显著的优点,已经成为工业自动化生产的不可缺少的关键技术。本文通过借鉴传统机械手的设计方案,对适用于工厂锻件搬运的机械手PLC控制系统进行了相关模拟仿真和设计。在对机械手液压机构进行了深入的分析的基础上,认为机械手的设计需要考虑回转原点、点动控制和自动化控制三个因素;然后对适合机械手的PLC控制器、压力和位移传感器进行了相关技术参数选择,同时还对整体程序的设计进行了相关阐述,希望能够给以后的机械手PLC控制系统设计提供借鉴意义。
关键词:PLC;机械手;控制
中***分类号:TP241 文献标识码:A 文章编号:1007-9416(2017)02-0013-02
随着工业机械手的广泛应用,其已经成为自动化控制领域的重要技术。在制造业不断发展的今天,机械手一方面可以代替人工进行生产线的作业,另外一方面机械手可以按照实际生产工艺的要求,按照一定的时间和程序设置来完成工作的卸载和传送。机械手的广泛应用可以大大的提高劳动生产率,加快我国制造业的转型与升级。如果机械手采用传统的继电器进行控制,则会直接造成系统原件比较繁杂、稳定性差以及出现故障概率高的特点。随着PLC技术的广泛应用,通过使用PLC来设计机械手的控制系统,可以保证较高的可靠性和较低的故障率,使用起来也相对简单。本文通过采用可编程控制器PLC来实现机械手的控制系统设计,使得控制过程精确可靠,使得在实际生产过程中变得明确和清晰。
1 机械手机构的液压系统分析
本文的机械手设计案例以锻造车间的机械手为例,该机械手处在高温的操作环境之中,机械手所要实现的功能就是将高温的锻件棒材加持到锻造工位的传送带上。实现对棒料准确的搬运,替代人工操作,改善工作环境。机械手的液压系统主要包括了液压驱动、手臂的升降和收缩等系统,再加上液压马达。液压换向回路使用三位四通阀进行控制。在机械手设计的过程中应该考虑以下几个方面的问题:(1)锻件的重量较大,机械手应该具备较大的夹紧力。同时工件在移动的过程中还会出现较大的惯性,保证工件不会脱落。(2)机械手的手指应该具备一定的夹角,手指的开闭角直接影响着工件能否顺利的加持到锻造工位上,对于手指的开闭幅度具有严格的要求;(3)机械手应该保证工件在搬运过程中的准确定位,必须要根据锻造工件的形状来选择机械手手指的形状;(4)由于锻件处在高温状态,在加持过程中应该保证机械手具有较高的强度,另外机械手的结构应该尽量紧凑,使得机械手的重心能够维持在手臂的回转轴线上。(5)在机械手设计的过程中,应该考虑到被抓工件的要求。如果是圆柱形锻件,则应该考虑使用V型手指,圆球形的工件考虑采用三指状的手指,方便加持工件。对于那些表面质量要求比较高的工件,应该在机械手的手指上加上泡沫垫片,防止加持部位的损坏。
2 机械手PLC控制系统的设计
2.1 PLC可编程控制器介绍
机械手所使用的PLC控制器主要包括了CPU、信号输入模块、数据输出模块、CPU扩展单元以及编程模块。CPU相当于PLC的心脏,完成对输入信号和数据的处理,将这些数据存储在存储器中。对于输入和输出模块而言,输入的信号主要有分为两个类别,分别为电压信号和电流信号,如果外在的信号比较尖锐,则会造成PLC的CPU损坏。另外为了控制外来的负载的额度,可以通过小型继电器的使用,来实现外来负载的隔离。在PLC中编程器主要是用来检测各种信号的运行状态,一般使用编程器的状况为逻辑输入有误或者需要检修的时候。本文中的PLC电源使用的是24V直流电源或者220V的交流电源,机械手的PLC控制器选择类型为西门子20EDR-1,有两个输入和输出模块,在A/D转换方面选择AD041型号,所设计的PLC框架如***1所示。
其中PLC的基本参数如表1所示。
本系统的输入电流信号范围是5-23mA,对应的十六位进制为0000-1770。用于补码的转换数据范围是3.2-4mA,当输入电流信号小于3.2mA时,断线检测的功能将会被充分启用,并且将数据转化为8000。首先对于模拟信号和数字信号的转换方面,在CPU模块中不能进行量程控制字符的改变,如果需要改变,则必须进行断电后重新操作。
2.2 机械手位移传感器的选择
位移传感器的选择对于机械手的设计具有重要的意义,机械手臂的升降和旋转都需要位移传感器的作用,还应该把位移数据准确的显示在屏幕上,主要目的就是满足机械手臂的位移和速度测定。目前通用的传感器为光栅位移传感器,当传感器的两块光栅的位置发生相对变化时,光敏电阻发生变化,实现了电信号传递,从而转变为位移信号,实现了位移的精确测量。除了直线位移传感器外,还需要安装角位移传感器,角位移传感器的类型为E6W5-2014。最后机械手指在加持工件的过程中,需要安装压力传感器,其中输出信号范围是5-60mA,电源选择24V直流电源。在机械手触摸屏的选择方面,要求有两个,首先就是要内存要大,能够存储较多的数据,分辨率要大和较高的显示亮度;其次PLC触摸屏要有串行通信功能,更好的方便PLC与机械手臂之间的通信。
3 PLC控制系统的程序设计与步进电机选择
3.1 机械手PLC总控制程序的设计
在机械手臂的下降和上升的程序设计中,只是两者的输入和输出的地址不同。在压力检测方面,只有检测到锻件毛坯夹紧以后才可以进行下一步的位移动作,所以首先应该进行压力的检测,实现了压力数值的显示。本文还通过CAE的仿真优化设计,为了进一步实现机械手臂的启停与位移控制,减少PLC控制器的安装面的位置,可以将启动按钮与停止按钮进行合并。同时为了确定机械手臂是处于手动工作模式还是处在连续工作模式,需要进行连续工作模式按钮,可以根据实际的运行情况来调整机械手臂的位置。同时为了保证机械手的正常运行,机械手在每一个工作周期内都要进行初始位置的检验,如果不是回到初始位置,则应该执行回到回转原点的操作。和启动的程序一样,机械手臂工作的运行方式也是通过按钮来实现的,手动按钮可以实现机械手的各种动作操作,从而满足实际生产的需求,只需要对步进电机的脉冲时间进行调整,尽量减少机械手的行程。在经过CAE软件操作的优化的过程中,可以通过以下结果步骤来进行,首先应该对机械手臂的模型进行优化,建立相应的机械传动机构,包括各种零件的设计以及机械手自由度的设计;其次,对机械手的模型进行运动仿真模拟,测试模型设计是否能够满足生产需求;然后细化设计模型,建立设计变量和目标函数之间的关系,得到性能最优的设计参数。本文根机械手的运动要求将机械手的抓取机构进行优化,从而绘制PLC控制流程***,通过对梯形***控制程序的编写,满足了实际生产机械手的工位需求。
3.2 步进电机选择
三相步进电机通常将电脉冲信号转变为角位移信号,步进电机的旋转是依靠角度的不断移动而进行的。通过对电脉冲数量的控制,来实现位移的控制。在步进电机的选择方面,本文采用的是三菱公司的横轴和纵轴位移的机械手升降机构,最大使用电流为3A。另外PLC启动技术的控制与传统的控制技术相比,具有价格低廉和结构简单等优点。现代化的PLC启动技术可以分为感知系统、控制程序、主机CPU部分以及执行机构的设计部分。在使用CAE进行软件仿真模拟的过程中,通过使用锻件的抓取机构为实际性能的优化目标,通过连杆机构的数次优化和坐标位置优化,使得机械手臂的抓紧力由3.5MN转变为20.56MN。通过采用虚拟样机技术可以有效的模拟机械手在实际生产过程中的抓取行为,现夹紧力的不断提高,具有较大的实际成产意义。表2位本PLC系统中A/D转换器的基本参数。
四个自由度的机械手臂的设计具有一定的普遍性和实用性,在PLC控制的模式下,实现锻件从一个位置运送至另一个位置,准确的实现位置定位和完成各项动作。在实际操作的过程中可以通过触摸屏完成各项操作和读取机械手实际的运行状态,包括压力和位移数值等信息,方便对机械手进行很好的控制。
4 结语
PLC控制技术在机械手设计领域中已经得到了广泛的应用,从而使得机械手在工业领域中得到了广泛的应用。本文在分析参考文献的基础上,借鉴传统机械手的设计方案,对适用于工厂锻件搬运的机械手PLC控制系统进行了CAE模拟仿真和设计。首先对机械手液压机构进行了深入的分析,得到机械手控制的三个关键因素;然后对适合机械手的PLC控制器、压力和位移传感器进行了相关技术参数选择,同时还对整体程序的设计进行了相关阐述,希望能够给以后的机械手PLC控制设计提供参考价值
参考文献
[1]尤峥.全自动冲压生产线在轿车生产中的应用效益分析[J].锻造与冲压,2005,9(4):6-8.
[2]邹立连.一种汽车覆盖件自动化冲压线改造的实际应用[J].制造业自动化,2004,26(12):73-74.
[3]何福林.汽车覆盖件冲压生产线概述与选择[J].锻压机械,1999(6):6-9.
[4]林成.汽车覆盖件冲压自动化生产的研究[J].吉林大学出版社,2006.
转载请注明出处学文网 » 机械手PLC控制设计