Hafner 的近自由电子-紧束缚混合模型,建立了C u-T i-Z r三元合金原子间势函数。在建立势函数的基础上,利用分子动力学模拟从原子层次上对Cu60Ti20Zr20非晶合金的结构以及液态-非晶态动力学转变过程进行了深入研究。发现Cu60Ti20Zr20非晶合金具有中程有序结构,解释了这种特殊结构与原子间相互作用的关系。对广泛应用于描述非晶动力学转变过程的模式耦合(MCT)理论在描述多元非晶体系动力学转变的合理性进行了评估,发现MCT理论不能准确描述β-驰豫过程初期体系的动力学。根据非相干中间散射函数的Laplace变化,在不使用近似的情况下精确计算了体系的动力学记忆内核(Memory Kernel);通过比较由Laplace变化精确计算和在近似基础上MCT理论预测的动力学记忆内核,明确了MCT理论在描述β-驰豫初期失败的原因是忽略了原子的振动。提出了一种根据体系特征参数λ及非相关散射函数平台值在MCT临界温度Tc附近重现动力学记忆内核的简便方法。
目前,大块非晶合金的制备和表征已经取得了重大进展,然而人们对于晶体-非晶动力学转变微观过程并不明确。该研究对于阐述多组元大块非晶合金的动力学转变过程具有重要的科学意义,同时有利于丰富材料科学关于液态/非晶态动力学转变的理论描述。
该工作得到世界著名的德国洪堡研
2007年德国于利希研究中心固体物理所承担了西门子公司的一项课题――“构建高精度原子间相互作用势函数以预测氧化物陶瓷的热导率”。韩秀君特别研究员与Dederichs教授合作,采用第一性原理与“力匹配法”相结合的方法建立了TiO2的原子间相互作用势函数。对TiO2晶体结构、状态方程、声子谱、热膨胀系数、熵、自由能以及等容比热的计算表明,建立的势函数能够很好的描述rutile结构TiO2,其准确性较之过去广泛使用的Matsui-Akaogi(MA)势函数得到了很大提高,建立的势函数亦能够较好描述Anatase 和Brookite 两种结构的TiO2。
原子间相互作用势函数是分子动力学模拟的前提与关键,是计算材料学在原子层次上无法回避的难点。原子间相互作用势函数的构建非常冗繁复杂。发展高精度的势函数对于计算材料学这一新兴学科的发展具有重要的推动作用。建立的高精度TiO2势函数可以应用于TiO2块体、表面、纳米晶和纳米线等相关问题的研究,这对于TiO2催化和光学等性能的研究具有重要的意义。
该工作的创新点是在势函数构建过程中引入了极化和偶极矩,由此得到的势函数能够比较准确的描述TiO2的声子色散曲线,在高频区其准确度可以比拟实验和第一性原理计算,而目前广泛采