【摘 要】导数的概念最早是由莱布尼茨引入的,记作。当函数导数次数不是整数而是分数时,即为分数阶导数0
【关键词】分数阶导数;Riemann-Liouville定义;Caputo定义;等价;计算公式
0 引言
分数阶微积分[1-3]的研究历史很久远,要上溯到17世纪。1695年,在L’Hospital在给Leibniz的著名信中提到了关于某一函数的n阶导数,当n为二分之一时,结果会是如何,从而产生了分数阶微积分。对于分数阶微积分的研究,首先是在数学上,Euler、Laplace、Abel、Fourier、Liouvile对分数阶微积分的研究做了一些工作。但是,第一本关于分数阶微积分理论的专著[4]直到1974年才出版。随着Caputo、Riemann、Grünwald、Hadamard、Letnikov、Hardy、Riesz、Marchaud、Littlewood、Ross等数学家或物理家对分数阶微积分的贡献,形成了现在被公认的几种分数阶导数的“定义”,其中包括Riemann-Liouville“定义”和Caputo“定义”[5]。
在最近几十年间,对于分数阶微积分应用的研究有了较大的发展,在科学及工程中的很多领域都有重要的应用,这些领域包括生物材料[6-7],控制和机器人[8-9],粘弹性动力学[10-11],量子力学[12-13]等等。在这些众多涉及到分数阶导数理论应用的文献中,都是直接引用上述“定义”的说法。
2 结论
【参考文献】
[1]S.G. Samko,A.A. Kilbas and O.I.Marichev,Fractional Integrals and Derivatives:Theory andApplications[M].Gordon and Breach,New York,1993.
[2]I.Podlubny,Fractional Differential Equations[M].Academic Press, San Diego, 1999.
[3]A.A. Kilbas,H.M. Srivastava and J.J. Trujillo, Theory and Applicationsof Fractional DifferentialEquations[M]. Elsevier,Amsterdam, 2006.
[4]Oldham K B, Spanier J. The Fractional Calculus [M].New York-London: Academic Press,1974.
[5]Li Xiao-rang. Fractional Calculus, Fractal Geometry and Stochastic Process[D]. Ontario: The University of Western Ontario USA, 2003.
[6]W.G.Gl?ckle and T.F. Nonnenmacher,A fractional calculus approach to self-similar proteindynamics[J].Biophysical Journal, 1995, 68: 46-53.
[7]M. Kopfet al,Anomalous diffusion behavior of water in biological tissues[J]. BiophysicalJournal, 1996.
[8]]R.R. Nigrnatullin and S.I.Osokin, Signal processing and recognition oftree kinetic equationscontaining non―integer derivatives from law dielectric data[J].Signal Processing,2003,83:2433-2453.
[9]M.D. Ortigueira, On the initial conditions incontinuous-time fractional linear systems[J]. Signal Processing, 2003.
[10]R. Metzler and T.F. Nonnenmacher,Fractional relaxation processes and fractional rheologicalmodels for the description of a class of viscoelastic materials[J].Int. J. Plasticity,2003.
[11]A. Chatterjee, Statistical origins offractional derivatives in viscoelasticity[J]. Journal ofSoundand Vibration, 2005,284:1240-1245.
[12]N.Laskin, Fractional quantum mechanics and Lévy path integrals[J]. Phys. 1ett. A 268(2000):297-305.
[13]D. Baleanu and S. I. Muslih, About fractional supersymmetric quantum mechanics[J]. Czechoslovak Journal of Physics, 2005,55(9):1062-1066.
转载请注明出处学文网 » 关于分数阶导数定义的商榷