我们都知道成像器件是摄像机、数码照相机的关键部分,其主要任务就是实现光-电转换――将镜头捕捉的光信号转换成电信号进行处理。目前有两种成像器件;CCD和CMOS。CCD(Charge CoupledDevice,电子耦合器件)在上个世纪70年代初开发成功,在80年代初期就被应用于摄像机,现已被广泛应用于摄像机和数码照相机中。
其实CMOS即“互补金属氧化物半导体”,英文全称为Complementary Meta(Oxide Semiconductor)并不是一种刚刚起步的新技术,从上个世纪90年代起,人们就已经开始对它进行广泛的研究了。那时的人们就已发现CMOS的一些特有优点,并逐渐开发利用这些优点,并将之广泛地应用于手机、PDA、单反相机等。
CMOS最早是用在计算机CPU和内存上的,是主板上一块可读写的存储芯片,用于存储计算机系统的时钟信息和硬件配置信息等。随着CMOS技术的发展,CMOS也逐渐应用到摄像机系统中作为成像器,也就是CMOS成像器。由于cM0s成像器采用一般半导体电路最常用的CMOS工艺,可以轻易地将周边电路(如AGC、CDS、Timing generator或DSP等)集成到传感器芯片中,从而继承了CMOS低功耗、小型化的特点,因而非常适用于小型的手持式摄像机。
那么,CMOS与CCD相比有哪些优缺点呢?在说Sony CMOS技术之前,首先我们将传统CMOS与CCD做一简单的比较。
传统CMOS的主要优点
信号读出速率高
由于大部分信号处理电路可与CMOS在同一片芯片上制作,信号机驱动传输距离缩短,电感、电容及寄生延迟降低,且信号读出采用X-Y寻址方式,因而CMOS***像传感器工作速率要优于CCD。CCD信号读出速率通常不超过70M pixels/s,而CMOS可达1000M pixels/s,因此CMOS更容易实现高质量的平稳慢动作记录,以及方便对焦的无损数字***像扩展(Expand)等,而这些功能在Sony HVR-V1C摄像机中都有体现。
无垂直拖尾
垂直拖尾是指当拍摄高亮度发光物体如照明灯、太阳时,画面上会出现一条垂直的亮带。这是因为在CCD成像器上,当光照产生的电信号超过了二极管(垂直存储器)的容量时,二极管(垂直存储器)电荷会发生溢出,从而产生垂直拖尾现象。而CMOS由于其特殊的成像结构,这种现象不会出现。
低功耗
简单地讲,CCD需要很多驱动电压(-7.5V到1.5V)来驱动电荷转移,而这种电荷转移需要消耗大量电能。而CMOS由于采用了传统CMOS的大规模集成电路工艺,只需一个电源即可驱动,因而CMOS的耗电量仅为CCD的1/8到1/10。
集成程度高
由于CMOS成像器采用一般CMOS大规模集成电路工艺,所以能够很轻易地将其他功能芯片一起整合到CMOS芯片上。比如说在一块芯片上可同时实现视频信号处理和静止***片信号处理,而这在CCD上是难以实现的。同时大规模集成电路的生产也降低了成本。集成程度高的特点使得CMOS更适合于低功耗的小型手持式摄像机。
传统CMOS的主要缺点
固定模式噪点
由于CMOS的每个感光二极管都需搭配一个放大器,而当像素数以百万计时,就需要百万个以上的放大器,而放大器属于模拟电路,并且很难让每个放大器所得到的结果都保持一致。因此与只有一个放大器放在芯片边缘的CCD成像器相比,CMOS传感器的噪点就会增加很多,从而大大影响了***像品质。同时由于CMOS传感器集成度高,且各光电传感元件、电路之间距离很近,所以相互之间的光、电、磁干扰较严重。
CMOS产生的典型噪点就是固定模式噪点,这就是人们一直说CMOS的***像质量比CCD差的主要原因。可以这样说,是CMOS成像器的固定模式噪点的缺陷制约了CMOS一直只能在小尺寸、低价格,且对摄像质量无过高要求的场合(如监控、视频会议、手机、PC等)应用,而难以应用在高***像质量摄像机中。近几年,随着CMOS电路消噪技术、数字信号处理技术的不断发展,CMOS在这方面的性能已经与CCD相差无几了。
拍摄快速运动***像时***像变歪
CCD在光照的同时就能将信号存储起来,然后从垂直存储区读出一帧帧画面信号,配合着电子快门的使用,这样的机制可以很好地捕捉到快速运动物体的每一帧画面。而CMOS的扫描是基于行的,因而扫描每个像素的时间都各不相同,因而在拍快速运动物体时会出现倾斜。***像的倾斜程度与运动物体的速度和记录帧率有关的,当记录帧率足够高时,这样的现象就不会被察觉。此外,使用机械快门也能够有效地减轻***像倾斜。
灵敏度较低
灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力。相同尺寸情况下,CCD的灵敏度要比传统CMOS要高。这主要是因为CCD像元耗尽区深度可达10mm,具有从可见光到近红外光谱段的完全收集能力。CMOS采用0.18~0.5mm标准CMOS工艺由于采用的电阻率硅片须保持地工作电压,像元耗尽区只有1~2mm,其吸收截至波长小于650mm,因而很难吸收红光及近红外光。
传统CMOS虽然有许多特有优点,但其在***像质量上的缺点使CMOS一直难以用在对摄像质量要求较高的专业摄像机上。随着CMOS技术的发展,特别是最近几年,CMOS的***像质量已经得到了大幅度的改善,在某些方面已经接近甚至超过了CCD。其中,以Sony的CMOS研究与开发最为成功。
Sony CMOS技术
Sony有着多年的CCD开发经验,拥有领先世界的CCD制造技术。近几年Sony将这些经验和技术成功用于新型成像器件CMOS的开发,不仅大大改善了传统CMOS的缺点。而且Sony进一步把它在视频信号处理方面的经验与技术用于CMOS成像器,成功开发了充分利用CMOS优势的视频信号处理算法。结合Sony强大的视频信号处理技术的支持,Sony CMOS成像器的优势大大增强,最终研制成了无论***像质量还是各种性能都能完全胜任专业摄像机要求的CMOS成像器,开创了CMOS应用于专业摄像机的新时代。
Sony Clear Vid CMOS技术
ClearVid CMOS技术是Sony CMOS技术的重要研究成果,也是Sony多年来对CMOS技术的研究结晶,ClearVid CMOS技术的研发成功使CMOS能够真正地应用在专业摄像机领域。
Clearvid CMOS技术包括两个要点。
第一,它通过将每个像素旋转45度,增大每个像素的感光面积,提高灵敏度。
第二,通过Sony增强型处理器EIP(Enhanced Image Processor TM)执行内插运算算法,提高成像器解析度。我们知道CMOS传感器的每个象素由4个晶体管与1个感光二极管构成,通过内插运算算法,四周的4个感光二极管(像素)运算生成一个新的像素,大大提高了CMOS成像器的解析度。
由***4可见,3个原始的像素的通过内插运算得到3个新像素点(蓝色部分),即3=1+1+0.5+0.5,现在一共有6个像素点了,所以每3个像素通过内插运算就能得到自身两倍的像素;每行960像素内插运算后就能得到1920个像素。
由以上可以看出ClearVid CMOS将像素倾斜45度排列,使用内插运算算法的技术,大大提高了CMOS成像器的灵敏度和分辨率,从而解决了CMOS在专业领域应用的主要瓶颈。
相对于CCD成像器的发展,CMOS专业成像器是个新生事物,而新生事物一开始总是不被人们所接受。但是新生事物的优异性能必将使它迅速发展,这是一种趋势!就像液晶监视器与CRT监视器,胶片摄影机和数字摄影机一样,很多人一开始不接受液晶监视器和数字摄影机,但现在液晶监视器和数字摄影机以其诸多优势被广泛应用了。同样的道理,许多人一听到CMOS就说成像质量一定不理想,一听说25Mbps码流就认为***像质量一定比50Mpbs码流的差,其实这都是片面的,因为***像质量的好坏涉及到很多方面,我们认为最好的比较办法就是把两个机器拿到面前进行直接的***像质量对比,这样才能得出比较真实的结论。
转载请注明出处学文网 » 浅谈CCD与Sony CMOS