引言
冗余电源是高可用系统中的关键组件。在最简单的解决方案中,两个电源可以采用二极管来驱动负载以共同为输出供电。这样,这两个电源既可以共同为负载供电,也可以一个工作,一个备用。场效应晶体管(FET)ORing控制器是一款更实用的解决方案,因为它避免了二极管电压降、功率损耗以及热损耗。因此可以用低电压损耗MOSFET来实现更具创新性且经济的系统。本文将讨论几个服务器冗余电源配置的示例。
服务器的冗余电源技术
高可用系统的电源总线可采用OR或N+1配置,也可以两者同时采用。一般来说,在低电压、高电流的应用中不采用二极管,因为存在正向压降及由此带来的热损耗,更倾向于采用FET ORing技术。然而,采用集成和分立设计的MOSFET控制器各有很多不足之处。
MOSFET两端的差分电压为VAC,如***1所示,由控制器进行监控,控制器根据VAC来设置MOSFET的栅极电压。MOSFET开启和关闭的实际开关点电压以及控制的方法和速度决定控制器成功模拟二极管的性能和稳定性。
TPS2410控制器的设计旨在专用于服务器应用,而服务器的负载通常为一个低电压、相对恒定的高电流,不允许出现流向失效电源的反向电流。下面我们将讨论一些有关冗余电源配置的示例。示例中采用***1所示的带方框的二级管符号来表示N沟道MOSFET及控制器的简***。
OR配置
***2为电源的一种简单的ORing配置。通常,在刀片服务器上的主电源总线为+12V。对于其它电源而言,甚至包括CPU的内核电压(通常只有0.8V~1.8V),OR布线同样如此。计算机内核电压太低,无法使用二极管。
这个例子中的组件位置没有标出。设计人员可以把系统分区然后在电源或刀片服务器上找到ORing电路。
并联MOSFET
控制器的栅极关断电流足以驱动多个MOSFET栅极。对于高电流应用而言,MOSFET可采取并联和背靠背的方式连接以去除MOSFET主体二极管效应。以并联方式接入的MOSFET在相同部件号的器件之间有细微的参数上的区别。在并联工作时,它们的负载会出现不均衡,且这种不均衡在开启时比在恒定状态时更明显。通常,一个MOSFET承载大部分的启动电流。此处只考虑通常选用MOSFET的因素,但是对于并联的MOSFET,则需要查询MOSFET规范中的安全工作区(sOA),确定单个MOSFET能支持几十微秒的负载。
背靠背MOSFET
TPS2410控制器的功能超越了基本的ORing功能,具有欠压和过压保护功能,而诸如TPS2412的简单控制器只提供基本的ORing功能。将检测过压的ORing控制器和背靠背MOSFET配置在一起使用会让我们受益非浅。当检测到过压情况后,控制器会关闭MOSFET栅极,且PG信号为FALSE以表明出现了过压的情况。如果过压高于正向主体二极管电压,则电源将不断向负载提供更高的电压。PG输出会发出信号使系统的电源控制器关闭失效的电源。背靠背MOSFET确保了控制器一旦检测到过压情况就立刻关闭输出。
电源到电源总线
该控制器可以对电源到电源总线之间的热插拔事件进行管理。无论电源或总线处于什么状态,电源都可以热插拔到电源总线上。当电源从电源总线上热拔时,控制器会将MOSFET输入端的电压调至OV,从而尽可能地把的连接器引脚电压降至安全范围。要求在MOSFET两端具有一个负电压的控制器继续驱动栅极以使其保持开启状态,而负载电压则通过MOSFET被反射到输入连接器引脚之上。
电源总线到负载
像TPS2490这样的热插拔控制器应该用在电源总线和刀片服务器之间。当刀片服务器被热插拔时,输入端的大容值电容先放电并产生很高的浪涌电流,浪涌电流会损坏总线连接器和电路板,进而产生影响系统其它电子组件的短暂的压降。热插拔控制器可以管理浪涌电流并在稳定的状态下发挥高速电路断路器的作用,以保护系统组件,还可以防止其它操作软件出现故障。
N+1配置
N+1布线和***2中的OR布线一样,但至少有3个电源接入总线。这一概念可扩展到任何N个电源,并由第N+1个额外电源作为冗余电源。这种N+I的组合电源比OR更经济。有了ORing以后,需要使用两个大电源,因为每个电源必须能够在其它电源故障时为最大负载供电。这些电源在正常运转情况下可能会共同为负载供电,但这不是必须的。通常,N+1个电源的设计负载为总负载电流的N分之一。这样,在一个电源故障的时候其余的可以继续供电。如果将N+1个电源的输出电压调节得非常接近,那么在大电流应用中就会出现负载共享。和ORing一样,电源可以热插拔。
与OR相比,N+1个电源更经济实惠,因为N+1个电源总线具有可扩展性。为了最大限度降低系统电源的成本,当负载增加时,我们可以添加电源。较低电流的电源可以不需要并联的MOSFET。
N+1个电源总线的OR
假设刀片服务器背板的配置为OR(两组N+1总线),如***3所示,每个刀片服务器由A、B总线共同供电,这两个电源总线由N+1个电源组成。这些刀片服务器的总线即为OR型。
请注意供电的拓扑结构。刀片服务器与电源连接的物理位置对电源总线的平均电压提出了更高的要求,这有助于负载共享。在这个示例中,刀片服务器1主要由总线A供电,而刀片服务器M主要由总线B供电。这样,与负载共享解决方案相比较,冗余热插拔电源解决方案的成本更低。这种电源分配方案对其它背板负载具有很重要的实际意义,如存储子系统中的磁盘驱动器。
为满足这些服务器的要求,控制器必须要具备如下功能:
1 正关闭阈值电压功能。该功能确保没有流向失效电源的反向电流,并确保对一个电源进行热拔时电源总线的输入终端没有电压。
2 线性栅极控制功能。该功能是首要的,因为在电源转换时可以保证稳定性。具有开关控制功能的控制器不允许有反向电流流向电源,该控制器在状态转变时会出现振荡。
3 为了驱动并联或背靠背的MOSFET并保证快速关机时间,栅极关闭电流必须高于2A。快速关机时间对于防止在检测到快速关机阈值后反向电流流向电源现象的发生至关重要。
4 ***器件具有内部充电泵,不需要辅助支持组件且占用的电路板面积非常小。
5 与系统电源控制器配合工作的欠压、过压保护以及一般状态输出功能,以保持电源总线。
结语
控制器是FET ORing的核心组件,使设计人员能够为冗余电源构建新颖的低成本解决方案。通过降低主要计算机机房的功耗并解决散热问题,实现低成本运营。通过精心设计电源总线,实现负载共享。
转载请注明出处学文网 » 服务器的冗余电源技术