摘要中国正面临严峻的环境问题,2013年中国的CO2排放量超过了欧盟和美国的总和,同时中国的人均CO2排放量首次超过欧
>> 中国碳排放区域划分与减排路径 我国煤炭消费碳排放测算及减排对策 中国人均能源碳排放因素分解及减排途径分析 中国碳排放的区域异质性及减排对策 中国碳排放变化的因素分解与减排路径研究 印尼承诺2030年前减少29%碳排放 中国可能的减排途径及减排潜力 基于SDDF的中国省区二氧化碳排放效率及减排潜力测度 能源活动碳排放核算与减排***策选择 工业碳减排潜力及来源分析 2排放变化、驱动因素及其减排对策研究'> 低碳经济下中国工业行业CO2排放变化、驱动因素及其减排对策研究 中国建筑业碳排放的影响因素分解及减排策略研究 中国2020年碳减排目标下若干关键经济指标研究 县域COD排放总量预测及减排潜力与对策研究 低碳交通电动汽车碳减排潜力及其影响因素探讨 2排放峰值分析:中国的减排目标与对策'> CO2排放峰值分析:中国的减排目标与对策 河北省工业碳排放情景预测与节能减排潜力分析 出口商品碳排放量计算及减排研究 生活垃圾处理的碳排放问题和减排策略 特大型城市客运交通碳排放与减排对策研究 常见问题解答 当前所在位置:l.
[18]张兵兵,徐康宁,陈庭强.技术进步对CO2排放强度的影响研究[J].资源科学,2014,36(3):567-576.[ZHANG Bingbing,XU Kangning,CHEN Tingqiang. The influence of technical progress on carbon dioxide emission intensity[J].Resources science,2014,36(3):567-576.]
[19]王改革,郭立红,段红,等.基于萤火虫算法优化BP神经网络的目标威胁估计[J].吉林大学学报(工学版),2013,43(4):1064-1069.[WANG Gaige,GUO Lihong,DUAN Hong,et al.Target threat assessment using glowworm swarm optimization and BP neural network[J].Journal of Jilin university(engineering and technology edition),2013,43(4):1064-1069.]
[20]周永权,黄正新.求解TSP的人工萤火虫群优化算法[J].控制与决策,2012(12):1816-1821.[ZHOU Yongquan,HUANG Zhengxin. Artificial glowworm swarm optimization algorithm for TSP[J].Control and decision,2012(12):1816-1821.]
[21]黄正新,周永权.自适应步长萤火虫群多模态函数优化算法[J].计算机科学,2011,38(7):220-224.[HUANG Zhengxin,ZHOU Yongquan. Selfadaptive step glowworm swarm optimization algorithm for optimizing multimodal functions[J].Computer science,2011,38(7):220-224.]
[22]陈诗一.中国碳排放强度的波动下降模式及经济解释[J].世界经济,2011(4):124-143.[CHEN Shiyi. China’s carbon intensity fluctuation drop pattern and economic explanation[J].World economy,2011(4):124-143.]
[23]杜强,陈乔,杨锐.基于Logistic模型的中国各省碳排放预测[J].长江流域资源与环境,2013,22(2):143-151.[DU Qiang,CHEN Qiao,YANG Rui. Forecast carbon emissions of provinces in China based on Logistic model[J].Resources and environment in the Yangtze Basin,2013,22(2):143-151.]
[24]刘华***,赵浩.中国CO2排放强度的地区差异分析[J].统计研究,2012,29(6):46-50.[LIU Huajun,ZHAO Hao. Empirical analysis of the regional differences of China’s carbon dioxide emissions intensity[J].Statistical research,2012,29(6):46-50.]
[25]渠慎宁,郭朝先.基于STIRPAT模型的中国碳排放峰值预测研究[J].中国人口・资源与环境,2010,20(12):10-15.[QU Shenning,GUO Chaoxian. Forecast of China’s carbon based on STIRPAT model[J].China population,resources and environment,2010,20(12):10-15.]
[26]赵玉新,YANG Xinshe,刘利强.新兴元启发式优化方法[M].北京:科学出版社,2013.[ZHAO Yuxin,YANG Xinshe,LIU Liqiang. New metaheuristic optimization methods[M].Beijing:Science Press,2013.]
[27]张国有.经济发展方式变化对中国碳排放强度的影响[J].经济研究,2010(4):120-133.[ZHANG Guoyou. Economic development pattern change impact on China’s carbon intensity[J].Economic research journal,2010(4):120-133.]
[28]LIU N,MA Z, KANG J. Changes in carbon intensity in China’s industrial sector: decomposition and attribution analysis[J].Energy policy,2015,87:28-38.
[29]MOUTINHO V,ROBAINAAlves M, MOTA J. Carbon dioxide emissions intensity of Portuguese industry and energy sector: a convergence analysis and econometric approach[J].Renewable and sustainable energy reviews,2014,40:438-449.
[30]PAO H T,FU H C, TSENG C L. Forecasting of CO2 emission,energy consumption and economic growth in China using an improved grey model[J].Energy,2012,40:400-409.
[31]WISE M,HODSON E L, MIGNONE B K,et al. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications[J].Energy economics,2015,50:337-347.
[32]YU S W,WEI Y M,FAN J,et al. Provincial carbon intensity abatement potential estimation in China:a PSOGAoptimized multifactor environmental learning curve method[J].Energy policy,2015,77:46-55.
[33]YU S W,Wei Y M, FAN J,et al. Exploring the regional characteristics of interprovincial CO2 emissions in China: an improved fuzzy clustering analysis based on particle swarm optimization[J].Applied energy,2012,92:552-562.
转载请注明出处学文网 » 中国碳排放强度减排潜力测算