【摘 要】数学与人们日常的生产、生活中的各个领域间都有着十分密切的联系,有很强的工具性,掌握一定的数学思维、思想方法和能力,有助于学生综合素质的全面提升。高中面临着高考,数学学科又是分数比重占据较大的必考科目之一,无论是从长远发展,还是应试角度出发,掌握一定的高中数学解题技巧都尤为重要。本文就此问题展开了论述。
【关键词】高中数学;解题技巧
高中数学不同于语文、英语、历史这类文科课程,背诵记忆这种学习方法是不适用数学学科的,它更注重变通,需要灵活运用所学知识的同时还要掌握一定的解题方法和技巧。学生在掌握了数学解题技巧后,不但解题速度可以得到有效提升,还有助于数学素养的提高,能够运用数学知识、思维***思考,解决问题。
一、运用解题技巧解高中数学题的思维过程
首先,理清问题阶段。想要正确解答问题,关键是先理解问题,弄清楚问题的点,明确问题最终目的,然后大脑才能根据你分析问题时获得的信息展开思维活动。
其次,拟定计划阶段。这个过程也被成为转换,是积极探索和尝试、寻找解题方向和解题途径的过程,也就是针对问题不断选择和调整解题的思维方式和策略,是整个解答问题过程中思维活动的核心部分。
再次,实现计划阶段。所谓实现计划,就是利用转换问题后确定的思维策略解决数学问题的实施过程,其中会运用到数学基础知识、基本技能。这个实施过程详细展现了人具体思维的过程,是解题过程中一系列思维活动的重要构成部分。
最后,回顾反思阶段。当学生通过分析和不断尝试成功解决一个问题后,还需要对整个过程进行回顾和反思,以便将自己刚刚的一系列思维过程梳理清楚,并对整个分析、解题过程中思维方式和运用方法进行归纳总结,提炼出解决此类问题的技巧,并深入领悟。通过回顾反思可以让学生的数学思维得到拓展。
引导学生形成这样一个思维过程,在遇到问题时可以自动进入这种思维模式当中,不断积累,就会自己摸索出解答某类问题的技巧。
二、高中数学解题技巧分析
(一)解选择题的技巧
1.估算法
选择题里面常常会出现计算比较复杂的题目,如果按照正常的解题顺序进行精确计算会耗费大量时间,导致没有足够时间分析和解答后面分值高,且有一定难度的大题。面对这种情况先不要忙着提笔计算,为了节省时间,我们可以利用估算法。
2.代入验证法
因为选择题通常都会给出四个备选答案,我们完全可以利用代入验证的快捷方法把选项中已给的数值直接代入题目当中进行验证,以此快速选出正确答案,既节省了时间,又避免了有些同学计算准确率低造成的失误问题。例如,在题目“若■+3x=10,则x的值是=()”中,给出了四个备选答案,分别是3/4、2、1/2、3,直接将四个数值逐一代入验证即可,通常不需要四个都试一遍才会选出正确答案,这道题里,试到第二个就可以确定答案。
3.特殊值法
将题目中某个未知量设定为特殊值,通过简单运算得出答案的办法就是特殊值法,特殊值可以是特殊的数值,也可以是特殊的点、数列或***形,此种方法既可以省却复杂的运算过程,减少运算量,又将答案范围缩小了,有助于解题效率的提升。例如,在题目“已知一二次函数y=ax2+bx+c,其中a0,则下列哪个选项一定成立。给出四个选项分别为b2-4ac>0、b2-4ac0,进而判断出***像与x轴有两个交点,得出答案为第一个选项。
(二)反证法
所谓反证法,就是在肯定题设否定结论的基础上,把结论的否定当做条件进行推理论证,如果推理出矛盾,则可证明原命题结论是成立的,从而题目得证,是一种从反方向出发的间接证明方法。这种解题技巧适用于唯一性命题或否定性命题、必然性命题、无限性命题、起始性命题以及至多、至少型命题、不等式证明等多种题型。运用反证法解题时首先要弄清命题的条件与结论,然后假设命题结论的反面成立,进而以这个假设为条件进行演绎逻辑推理,直至推理出矛盾,最后,根据推理出的矛盾就可以认定假设是不成立的,也就间接地证明了原命题结论是成立的。其中的矛盾可以是与假设矛盾,也可以是与数学标准公式矛盾、与公认事实矛盾等等。需要注意的是,若想要证明的命题结论只有一种可能情况,只需驳倒这种情况即可,这种情况下的反证法又被称作归谬法;若想要证明的命题结论有多种可能情况,则必须通过穷举法把所有情况的相反结论都驳倒才能判定原命题是成立的。
此外,在数列求和中还可以运用逐项消除法来解决递推关系;求解积分时可以先在被积函数后面加上或是减去一个量,再减去或是加上一个相同量,保证加减前后不改变原来值,然后再把原积分变形、转化成另一种我们常见的,有规律可循的简单形式这种办法来求解;以及分类讨论、构造***形、数列等等多种解题技巧。
三、结束语
综上,高中数学虽然问题类型繁多,形式多变,但万变不离其宗,我们还是可以从中找出规律,掌握解题技巧,同样可以轻松解决各种难题。除了上文介绍的几种常用解题技巧,在平时的学习当中还要注重基础知识的学习,因为各种题型都是围绕知识点设计的;不宜采用题海战术盲目地进行练习,要有针对性的选择一些典型题目,熟练掌握解题技巧之后就能够举一反三,融会贯通。此外,还要注重审题技巧的训练,正确审题是解题的前提和关键。
【参考文献】
[1]贾小勇.浅谈高中数学的解题技巧[J].科学导报,2015(6):323-323
[2]江士彦.刍议高中数学中的立体几何解题技巧[J].读与写(教育教学刊),2015.12(11):99.134
[3]陆光.激发学生兴趣,巧用解题技巧――分析高中数学应用题的教学策略[J].考试周刊,2014(71):64-64.65