化学研究论文范文精选

化学研究论文篇1

摘要:超分子化学是化学的一个崭新的分支学科.综述了超分子化学的发展历程、超分子的化学分类、超分子化合物的合成以及应用等问题.

关键词:超分子化合物;主体客体;识别作用;配位

“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了.毕业论文超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学.在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能[1].超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成.聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力.如范氏力(含氢键)、亲水或憎水作用等[2].

1超分子化合物的分类

1.1杂多酸类超分子化合物

杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物.作为一类新型电、磁、非线性光学材料极具开发价值[3],有关新型Keg-gin和Dawson型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注.杜丹等[4,5]合成了Dawson型磷钼杂多酸对苯二酚超分子膜及吡啶Dawson型磷钼多酸超分子膜修饰电极,发现该膜电极对抗坏血酸的催化峰电流与其浓度在0.35~0.50mol/L范围内呈良好的线性关系.靳素荣等[6]合成了9钨磷酸/结晶紫超分子化合物,并对其光致变色性质进行了探究,即合成化合物具有光敏性,漫反射日光即可使其变蓝.王升富等[7]合成了磷钼杂多酸-L-半胱氨酸自组装超分子膜电极,发现该膜电极对酸性溶液中的NO2-有明显的电催化还原作用.毕丽华等[8]合成了多酸超分子化合物,首次发现了杂多酸超分子化合物溶于适当有机溶剂中可表现出近晶相液晶行为.刘术侠等[9]以Dawson型砷钼酸、金刚烷胺为原料合成了超分子化合物(C10H18N)6As2Mo18O62·6CH3CN·8H2O,该化合物具有可逆的光致变色特性,并提出了一个可能变色机理.

1.2多胺类超分子化合物

由于二氧四胺体系可有效地稳定如Cu(Ⅱ)和Ni(Ⅱ)等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用.苏循成等[10]合成了8羟基喹啉取代的二氧四胺大环配体,其中含有2个***的螯合基团,在适当情况下能分别与金属离子配位.

大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视.近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元.硕士论文李晖等[11]利用了冠醚分子的分子识别能力及蒽醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程.

1.3卟啉类超分子化合物

卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展.

1.4树状超分子化合物

树状大分子(dendrimer)是20世纪80年代中期出现的一类较新的合成高分子.薄志山等[12]首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物.镧系金属离子(Ln3+)如Tb3+和Eu3+的发光具有长寿命(微秒级)、窄波长、对环境超灵敏性等特点,是一种优良的发光材料,但镧系金属离子在水溶液中只有很弱的发光.朱麟勇等[13]合成了聚醚型树枝体与聚丙烯酸线性聚合体的两亲杂化嵌段共聚物,研究表明聚醚树枝体通过对Tb3+能量传递,使Tb3+发光强度大幅度提高的“天线效应”.

1.5液晶类超分子化合物

侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》[14]中详细讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学.李敏等[15]从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、NN之间形成一个离域的π电子体系.初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质.堪东中等[16]用4,4′-二羧酸1,6二酚氧基正己烷与等摩尔的4,4′-联吡啶合成了“T”型超分子液晶,并观察到随构筑“T”型介晶基元分子结构的变化,组装超分子体系由单向性液晶向稳定的双向性液晶转变的规律性.

1.6酞菁类超分子化合物

田宏健等[17]合成了带负电荷取代基的中位四(4′-磺酸基苯基)卟啉及锌络合物和带正电荷取代基的2,9,16,23四[(4′-N,N,N三甲基)苯氧基]酞菁季铵碘盐及锌络合物,并用Job氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列.发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650nm和酞菁负离子自由基在550~600nm的瞬态吸收光谱.结果表明在超分子体系中存在分子间的光诱导电子转移过程.

2超分子化合物的合成

2.1分子自组装

近年来分子自组装作为一种新的化学合成方法倍受关注,医学论文尤其是分子尺寸在1~100nm的化合物,它们用常见的化学合成法一般很难得到.最近,Yan等[18]运用超分子自组装方法合成了长度达厘米级、直径达毫米级、管壁达400nm的管,成为超分子化学合成上的一个亮点.

刘雅娟等[19]利用一对互补的分子组分5(4十二烷氧基苯乙烯基2,4,6(1H,3H)嘧啶三酮和4胺基2,6二十二烷基胺基1,3,5三嗪的自组装过程构筑了一种直径约为5μm的超分子纳米管.变温傅里叶红外光谱研究表明,在纳米管的形成过程中,氢键、π-π相互作用和范德华力等非共价键相互作用导致了超分子纳米管的形成.Reinhoudt等报道了最多具有47个钯配合物的有机金属树状分子,准弹性光散射实验(QELS)、原子力显微镜(AFM)和透射电镜(TEM)表明聚集体为直径200nm的圆球,Puddephatt合成了直到第4代的树状铂配合物(28个配位中心).

2.2模板合成

1992年Mobil公司的科研人员首次利用阳离子型表面活性剂的超分子液晶模板,合成了有介孔结构的氧化硅和铝硅酸盐,其中最具有代表性的是有六方排列介孔孔道的MCM-41[20].

以环糊精(α-CD,β-CD,γ-CD)作为环的轮烷的合成及性能研究尤其引人注目.环糊精边缘是亲水的,内腔是疏水的,环糊精作为主体与疏水客体分子自我识别可形成轮烷.刘育[21]在以环糊精为受体的分子识别和组装方面做了深入的研究.Isnin等成功地合成了不对称的轮烷.分子一端为二甲基(二茂铁甲基)铵盐,另一端为萘2磺酸盐.Stoddart等用聚乙烯醇与α-CD作用,端基为2,4二硝基苯时,得到了含有20~23个α-CD的珍珠项链型轮烷.Stoddart等在室温下合成一系列的索烃.在室温下以二苯34冠10(BPP34CI0)作为模板得到了索烃,收率高达70%[22].

2.3其他方法

最近,赵朴素等运用密度泛涵B3LYP方法,在6-31G*水平上设计优化了丁二酮肟与苯甲酸通过四重氢键构筑的异三体超分子,职称论文显示形成三聚体的反应可自发进行,实验合成出相关异三聚体[23].

赵士龙等[24]在水热条件下,合成了新型超分子化合物(bipyH2)2(H2P2Mo5O23).H2O,研究表明,杂多阴离子与质子化的4,4′-bipy和水分子通过氢键连成无限二维网状结构,形成超分子化合物.栾国有等[25]利用中温水热方法合成了化合物(H3NCH2CH2NH3)2[(HPO4)2Mo5O15],并确定其构型为5个MoO6八面体通过共边和共角连接形成1个五元环,其环平面的上下两侧各有一组HPO4四面体通过共用3个O原子与Mo—O簇键合,并且[H2P2Mo5O23]4-与H3NCH2CH2NH3通过强的氢键作用,形成一种新型的有机无机超分子杂化材料.

3超分子化合物的应用

3.1在光化学上的应用

Lehn等设计了专门用于光释放碱金属离子的穴醚,他们利用2硝基苄基醚充当一个大环的桥键,紫外光照可使此键断裂,形成单环化合物,后者对碱金属离子的络合能力大大下降.张海容等[26]发现在微量环已烷存在下,BCD可诱导BNS发射强的RTP.尹伟等[27]用Eu2+与邻菲咯啉(Phen)、2噻吩甲酰三氟丙酮(TTA)和联吡啶(Dpy)形成的四元、三元和二元系列配合物与上述2种分子筛组装成新的系列超分子纳米发光材料,并对它们的发光性能进行了比较.陈彰评[28]合成了卟啉冠醚4,4二甲基联吡啶超分子模型化合物.研究发现4,4二甲基联吡啶能很好地配合到卟啉与冠醚形成的空穴中去,在光照条件下,生成的卟啉激发态分子能很好地进行电子转移,形成了一个很好的光开关模型.

2在压电化学传感器的应用

超分子化学的主客体适应原理,在压电化学传感器中得到广泛的应用.超分子用作压电化学传感器的敏感涂层,利用超分子的特殊空间结构,通过分子间的协同作用,对目标分子进行分子识别.留学生论文符合空间结构的分析物被选择性地吸附,可以明显提高压电化学传感器的选择性.利用多种冠醚衍生物作为QCM涂层测定有机蒸气,如传感器阵列、模式识别等,在二元、三元、四元有机蒸气混合物中识别,预测结果较好,并用于定量分析.利用单苯15冠5(B15C5)、单苯18冠6(B18C6)、二苯30冠10(DB30C10)涂于T***化学传感器电极表面,可对39种有机蒸气进行分析,其中B15C5(涂载量12mg)对甲酸的检出限为20.1μg/L,并具有很宽的线性范围.

Dickert等用涂BCD的QCM和SAW测定四氯乙烯,测定下限可达几个10-6(Y).以后,他们又用交联BCD作为QCM的涂层测定氯苯,大量的二乙醚存在时(二乙醚-氯苯的体积比为50000∶1),不干扰测定,线性范围10×10-6~500×10-6(Y),并用于监测Grignard反应终点.Nelli等用间苯二酚杯芳烃衍生物作QCM敏感涂层,对硝基苯有较高的选择性,在相对湿度高达90%和有H2,H2S,NO,SO2,CH4,n-C4H1O共存时不干扰测定.Dermody等用多种杯芳烃衍生物,在SAW石英表面分子自组装成双分子层,测定苯、氯苯、甲苯等.Pinalli等用间苯二酚杯芳烃衍生物,测定气相中酒精的含量,线性范围1×10-3~4×10-3(Y),重现性好.Malitesta等用分子印迹电合成聚合制备仿生QCM传感器.姚守拙等用咖啡因(CAF)作模板分子制成BAW传感器,对CAF的响应范围为5.0×10-9~1.0×10-4

mol/L,在pH8.0时检出限5.0×10-9mol/L,回收率96.1%~105.6%[29].

3.3超分子化合物的识别作用

所谓分子识别就是主体(或受体)对客体(或底物)选择性结合并产生某种特定功能的过程,是组装及组装功能的基础,是酶和受体选择性的根基.互补性(complementarity)及预组织(preorganization)是决定分子识别过程的2个关键原则,前者决定识别过程的选择性,后者决定识别过程的键和能力.

对羧酸根、磷酸根的识别研究目的主要在于探讨主体分子对氨基酸、肽、核苷酸等的识别,进而研究对肽、核酸的催化水解反应.大环多胺及其金属配合物能很好地识别羧酸根、磷酸根的主体分子.带吖啶基团的配合物,通过Zn2+配合物的超分子自组装可对对二甲酸进行选择性识别.如果在大环多胺环外还有可以配位的氨基,则它与Cu(Ⅱ)能形成更加稳定的配合物.化合物(结构见***1)与Co(Ⅲ)形成的配合物与PO4

3-能形成相当坚固的配合物.因为分子识别的目的,这是系统可以作为一个能使磷酸键合位置移动的新摸型[30].

3.4超分子化合物作为分子器件方面的研究

分子器件是一种由分子元件组装的体系(即超分子结构),它被设计成为在电子、离子或光子作用下能完成特定功能的体系.刘祁涛[31]用对苯二甲酸terph为配体,合成了[Cu2(bpy)2(terph)]Cl2·4H2O晶体,其中bpy为2,2′联吡啶.英语论文应用苯三甲酸(TMA)为配体可以合成[Cu3(TMA)(H2O)3]n配位超分子晶体,为由配体超分子的途径制造纳米级的孔材料、实现纳米反应器的设想提供了可能.8羟基喹啉、邻菲咯啉的许多金属配合物都具有荧光,且配合物稳定.把8羟基喹啉或邻菲咯啉引入大环,由于两者都具有***的配位功能,可以形成稳定的超分子化合物,并进一步发展为光化学器件.

3.5超分子化合物在色谱和光谱上的应用

顾玉宗等[32]利用LB技术,以二十碳酸作辅助成膜材料,在疏水处理的P-Si上分别制备了2,4,6,10和20层聚乙烯咔唑(PVK)超分子膜.对这种体系的表面光电压谱(SPS)研究结果表明,表面光电压随PVK膜层数的增加而增强,在紫外区增强较为明显,随着膜层数的增加,表面光电压有趋于饱和的趋势.膜对基底的敏化主要是由于PVK的光导电性引起的.杨扬等[33]成功地用高效液相色谱法分离了某些超分子化合物合成过程中间产物富电子对苯二酚聚醚链(HQ)系列产品.

3.6超分子催化及模拟酶的分析应用

超分子的反应性和催化性,与酶对底物的识别和催化底物参加反应极相似.工作总结以模仿天然酶对底物的分子识别和高效催化活性为目的的模拟酶(或称人工酶)研究近十多年来是生物化学和有机化学的重要课题.其中对过氧化物模拟酶的分析应用研究特别突出.慈云祥等将氨基酸、蛋白质、核酸,对某些金属卟啉的模拟酶活性的影响加以应用,并结合免***分析技术,建立模拟酶作示踪物的酶免***分析方法,或以模拟酶作非放射性探针标记物建立核酸序列分析方法[34].

3.7在分析化学上的应用

Shinkai等在研究硼酸衍生化卟啉的分子组装行为,并用于测定糖分子构型方面取得了许多成果.例如:四(4硼酸基苯基)卟啉(TBPP)在水溶液中和糖分子存在下由π-π堆积成的聚集体,圆二色谱(CD)的激子偶合带(ECB)符号,对糖分子的绝对构型有专一性,可检测糖分子的绝对构型等等[34].

4结语

目前,超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究将更加紧密地与各化学分支相结合.可以预见,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同做出巨大贡献;超分子化学方法在无机化学中的应用,留学生论文将使人们获得多种具特定功能的配合物、晶体、陶瓷等材料;物理化学则要改变当前超分子化学的定性科学现状,从微观和宏观上把选择性分子间力、分子识别、分子自组装等过程用适当的变量进行定量描述,从而提高人们对超分子化学的认识和预测、控制能力,最终要寻求解释超分子体系内在运动规律和预言此类体系整体功能的理论工具[2].

参考文献:

[1]吴世康.超分子光化学前景[J].感光化学与光化学,1994,12(4):332-341.

[2]孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域[J].聊城师院学报(自然科学版),1998,11(2):27-33.

[3]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.125-126.

[4]杜丹,关晓凤,崔仁发,等.Dawson型磷钼杂多酸对苯二酚超分子膜电极电化学性能的研究[J].湖北大学学报(自然科学版),2001,23(1):53-56.

[5]杜丹,王升富,黄春保.吡啶2Dawson型磷钼杂多酸超分子薄膜修饰电极分析[J].测试学报,2001,20(4):29-32.

[6]靳素荣,姚礼峰.9钨磷酸/结晶紫超分子化合物的合成及表征[J].合成化学,2001,9(3):244.

[7]王升富,杜丹,邹其超.磷钼杂多酸L半胱氨酸自组装超分子膜电极对亚硝酸根电催化还原的研究[J].分析化学,2002,30(2):178-182.

[8]毕丽华,黄如丹,王恩波,等.多酸超分子化合物的合成及液晶性质[J].高等学校化学学报,1999,20(9):1352-1353.

[9]刘术侠,王春梅,李德惠,等.一个新的超分子化合物(C10H18N)As2Mo18O62·6CH3CN·8H2O的合成、结构及性质[J].化学学报,2004,62(14):1305-1310.

[10]苏循成,周志芬,林华宽,等.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究[J].南开大学学报(自然科学版),2000,33(4):57-61.

[11]李晖,许慧君,周庆复.冠醚取代蒽醌超分子体系的设计与合成及分子的能量转移的研究[J].感光科学与光化学,2002,18(1):58-62.

[12]薄志山,张希,杨梅林.基于静电吸引的自组装树状超分子复合物[J].高等学校化学学报,1997,18(2):326-328.

[13]朱麟勇,童晓峰,李妙贞,等.嵌段共聚物PAANa2DendrPE聚集体超分子结构中树枝体对铽离子发光增强的天线效应研究[J].感光科学与光化学,2000,18(2):188-192.

[14]晏华.超分子液晶[M].北京:科学出版社,2000.1-230.

[15]李敏,周恩乐,徐纪平.含对硝基偶氮苯侧基的丙烯酸酯类液晶聚合物的超分子结构[J].高等学校化学学报,1995,16(4):635-638.

[16]堪东中,万雷,方江邻,等.二元羧酸与4,4′联吡啶氢键缔合组装主链型超分子液晶[J].高分子学报,2002,(6):734-737.

[17]田宏健,周庆复,沈淑引.酞菁卟啉超分子的形成及光致电子转移过程[J].物理化学学报,1996,12(1):44-48.

[18]YANDe2yue,ZHOUYong2feng,YOUJian.Supramolecularself-assemblyofmacroscopictubes[J].Science,2004,303(2):65-67.

[19]刘雅娟,吕男,杨文胜.一种超分子纳米管的变温红外光谱研究[J].分子科学学报,2001,17(3):170-174.

[20]王彤文,戴乐蓉.混合超分子液晶模板法合成六方介孔相含钛氧化钴[J].物理化学学报,2001,17(1):10-14.

化学研究论文篇2

摘要化学冷光源是一种新型的有机发光材料。本文对化学光源的特点,结构与组成,化学发光机理和影响发光体系的因素进行了讨论,并简要介绍了化学发光物质草酸酯和荧光剂的合成与应用,论述了相关研究的进展情况。

关键词化学发光,化学光源,草酸酯,荧光剂,合成

1发展背景

化学发光是指某些化学反应中发出可见光的反应过程。化学发光体系有数种,但适用于化学光源的只有过氧草酸酯类化学发光体系。它以草酸酯、过氧化氢和荧光剂为主要成分,是迄今为止发现的一种最有效的化学(非生物)发光体系,量子产率高达20%~30%。

过氧草酸酯类化学发光最早发现于20世纪60年代。此后,20世纪70年代AmericanCyanamide公司的Rauhut等合成了一系列草酸酯。Rauhut等研究的主要目的是开发应急光源,并称之为“化学光源”(chemicallight),成为草酸酯获得实际应用的重要实例之一,并成功地研制和开发了发光棒。最初化学光源只是用于***事活动,后来逐步进入民用市场。使用这种冷光源可以杜绝因电火花或热光源引起火灾的可能性,也可用作紧急照明等。近年来,这种化学冷光源已日益流行于各大晚会上,具有很大的市场前景。另外,将应急光源与警报结合的紧急设施有利于人们在发生火灾时的逃生。

2化学光源的结构和组成

化学光源一般是由内外套管构成,外管的材质是聚乙烯塑料,内管是一个玻璃泡[1],不同的发光材料分别封装在内外管中。使用时将聚乙烯管折曲,使中间的玻璃泡破碎,两种液体一经混合立即反应,发出荧光。标准的化学光源持续发光2~20h。近年来化学光棒的构造也有一些改变,如Lexington&Assoelates公司发明的化学光棒里含有2种或以上的草酸酯,可发多色光。AmericanCyan-amide公司发明的化学发光器件只需转动就可产生化学发光。现在Omniglow公司还发明了一种化学发光器件,可连续发出不同颜色的光。

化学光源的组成主要包括二芳基草酸酯和氧化剂,通常的氧化剂为过氧化氢。当向体系中加入荧光剂,则产生很强的化学发光。此外,这一反应体系一般还包括一种或多种溶剂、催化剂和添加剂等。即在聚乙烯外管中放入草酸酯、荧光剂、溶剂,玻璃泡中封入过氧化氢、催化剂、添加剂。

3草酸酯类化学发光体系的发光原理

虽然草酸酯的化学发光经过了40多年的研究,但是至今它的发光原理也没有确定,其主要原因是反应的中间体活性较高、寿命短,无法直接获得检测,大多数人所认为的草酸酯类化学发光过程可用下列方程式表示[2]:

ArOCOCOArO+H2O2+荧光剂+催化剂=2CO2+2ArOH+荧光剂+hν

其发光机理可认为是:过氧化氢对草酸酯的羰基亲核进攻,生成双氧基环状中间体二氧杂环丁二酮,中间体分解将能量传递给受体荧光分子,使之处于激发状态,这种激发态分子从激发单重态回到基态,释放出光子即发出荧光。总的发光过程可用下式表示:发光效率是评价一个化学发光反应体系性能的重要参数。1摩尔分子发生化学发光反应如能产生1摩尔光子则化学发光效率为100%。过氧草酸酯化学发光的效率可用下式表示[3]:

QCL=YKI.YES.QFL

其中,YKI是关键双氧基环状中间体的产率,YES是激发态荧光分子的产率,QFL是荧光剂的荧光量子产率。由上可见,草酸酯的反应性能和荧光剂的荧光量子产率是决定其化学发光激发荧光效率的主要因素。采用具有较高量子产率的荧光剂将有助于提高化学发光的效率。

4草酸酯的种类及合成

草酸酯的化学发光强度和寿命主要取决于发光过程中的速率步骤,也就是过氧化氢与二芳基草酸酯的亲核进攻,以及随后2个取代基苯酚作为离去基团生成环状双氧基中间体的反应活性。一般芳基草酸酯分子中苯环上连有吸电的取代基,且该取代基的电负性越强,则越有利于酯的分解而形成环状过氧化合物。一个理想的草酸酯化学发光试剂还应在所用的有机溶剂(通常为邻苯二甲酸酯)中具有较好的溶解性(要求草酸酯浓度达到10-2~10-1mol/L)及稳定性。

对于草酸酯的选择,Rauhut等已作了大量的开拓性工作,我国对开发新型草酸酯化学发光试剂也作了较多研究。现有报道的草酸酯种类达数10种,可是能够满足上述发光条件要求的只有几种,用于化学光源较好的草酸酯是双(2,4,62三氯苯基)草酸酯,双(2,4,52三氯262烷基羰苯基)草酸酯和双(2,42二氯262烷基羰苯基)草酸酯。

双(2,4,62三氯苯基)草酸酯在邻苯二甲酸酯中具有较小的溶解度,发光强度大,持续时间短,可通过调节组分配比达到所需要求,较适合于化学发光体系。双(2,4,52三氯262烷基羰苯基)草酸酯化学发光量子效率较高,在溶剂中具有较大的溶解度,适合于高强度的发光体系。双(2,42二氯262烷基羰苯基)草酸酯发光强度比前一种弱,持续时间长,适合于制造低强度长寿命的光源。系列中各种酯的化学发光性能无明显差异,但双(2,42二氯262异戊氧羰苯基)草酸酯易提纯,稳定性高。

5荧光剂的选择及合成

荧光剂的结构决定了化学发光的颜色和效率。选用不同的荧光剂可以得到特定颜色的化学光源,然而,这种选择还必须受到荧光分子在溶剂中溶解度,以及在碱性和氧化气氛介质中稳定性的约束;同时荧光分子的荧光产率也对化学发光效率有影响,浓度淬灭效应小,具有较高荧光产率的荧光剂将有助于化学发光效率的提高。荧光剂在体系中的浓度有一适当的范围,一般在10-2~10-4mol/L,浓度太大容易引起浓度淬灭,太小则光强不足。

过氧草酸酯类化学发光体系中使用的荧光剂,通常选用较稳定的稠合线性共轭芳烃[4]。较好的荧光剂为蒽的衍生物:9,102二苯基蒽,9,102二苯乙炔基蒽[5,6]及其取代衍生物[7~9]等。除此之外,还有萘[10]和聚酰亚胺[11,12]的取代衍生物。

AmericanCyanamide公司还发现在发光系统中加入可溶性苝类荧光染料,可在黑暗中发出白光或更高强度的有色光。如在含有蓝色荧光剂的发光组分中加入可溶性苝类荧光染料,就可得到白光。改变用量则可得到蓝色和白色至白色和粉红色之间的颜色。合适的可溶性苝类荧光染料包括N,N’2二(2,52二叔丁基苯基)23,4,9,102苝四甲酰亚胺。

6影响发光体系的因素

6.1催化剂和抑制剂

在双氧环状中间体的生成过程中,一些弱碱的加入可增加发光强度,提高量子效率,但也会降低发光寿命[13]。实际使用时,常用的催化剂为水杨酸钠。通过调节催化剂的加入浓度,可以使长寿发弱光的体系转化为短寿发强光的体系。相反,抑制剂的加入,可以抑制化学发光,使光能以较平稳的趋势长时间地释放。抑制剂通常是一些有机强酸或酸酐。

6.2氧化剂的结构及浓度

草酸酯化学发光体系一般选用无水过氧化氢作氧化剂。当H2O2浓度较高时,不利于化学发光强度的提高;但在较低的浓度下,发光衰减的速率也随之加快。理论上草酸酯与过氧化氢浓度之比应为1∶1,但一方面因为草酸酯比过氧化氢贵得多,另一方面过氧化氢易分解,所以在制备化学光源时,为使草酸酯完全发挥作用,过氧化氢一般稍过量一些。如果加入一些酚类化合物,如2,4,62三叔丁基苯酚,可抑制储存过程中过氧化氢的分解。

6.3溶剂

考虑到草酸酯、荧光剂溶解性及与H2O2互溶性方面的原因,过氧草酸酯化学发光体系一般采用邻苯二甲酸作为溶剂,也可用二甲酯,丁酯,叔丁醇或三乙基柠檬酸酯[14]等。当溶剂中有水分或其它杂质时,会对草酸酯溶液的稳定性有影响,使制备的冷光源保存期缩短。

6.4提高发光强度及持续时间的其它方法

在发光体系中,加入适当比例的邻苯二甲酸二(十三)酯(DTDP)或已二酸二(十三)酯(DTDA),可以明显增强原发光体系的发光强度和发光持续时间。例如,在一种由AmericanCyanamide公司生产的绿色发光棒的化学液体(7mL)中分别加入410mLDTDP或DTDA,可使发强光的时间从原来的2h增加到20h。

加入少量的聚合物添加剂,如适量的聚苯乙烯[15],能明显增强化学发光,加入纤维素2乙酸2丁酸酯聚合物和聚环氧乙烷也能增强发光。

7不同颜色的化学发光组分

根据以上的内容,现介绍几种发不同颜色光的草酸酯化学发光体系[2,16]。

绿色化学发光,试剂A:邻苯二甲酸二丁酯作为溶剂,荧光剂二苯乙炔基蒽1.1mg/mL,草酸酯0115g/mL,还可以加入柠檬酸或聚苯乙烯,以改善发光效率;试剂B:80%邻苯二甲酸二甲酯+20%叔丁醇作为溶剂,浓缩H2O2(体积比为4125∶0.75);试剂A与试剂B体积比为1∶2混合,即可观察到发出绿光。

红色化学发光,试剂A:10mL罗丹明B(碱性)饱和溶液+160mL聚乙二醇400+2mL31%H2O2;试剂B:250mg双2(2,42二硝基苯苯基)草酸酯;向试剂A中加入粉末状的试剂B,摇动混合。蓝色化学发光,试剂A:250mg双2(2,42二硝基苯苯基)草酸酯+50mL邻苯二甲酸二乙酯+15mL二苯蒽;试剂B:25mL邻苯二甲酸二乙酯+215mL正丁醇+1.5mL31%H2O2;向100mL的试剂A中加入50mL试剂B,摇动混合。

黄色化学发光,试剂A:250mg双2(2,42二硝基苯苯基)草酸酯+50mL邻苯二甲酸二乙酯+110mg5,6,11,122四苯基萘;试剂B:25mL邻苯二甲酸二乙酯+2.5mL正丁醇+1.5mL31%H2O2;向100mL的试剂A中加入50mL试剂B,摇动混合。

8展望

化学光源现阶段的研究方向应该是提高发光的强度和寿命,以利于发挥更大的用途。长时间发亮的荧光棒可用于娱乐场合,而高亮度的荧光棒可在一些不宜用电或没有电的地方应急用,所以对过氧草酸酯化学发光体系作系统的研究是很有价值的。从原料的选择,各组分的配比到工业化生产都需要更进一步的探索。

参考文献

[1]熊振湖,刘玉茹,杨淑英.化学光源的研究与应用[J].天津城市建设学院学报1996,2(4):55-60.

[2]林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004.

[3]玉山江.过氧草酸酯的发光机理[J].***师范大学学报:自然科学版,2002,21(4):27-28.

[4]李斌,苗蔚荣.过氧草酸酯类化学发光激发荧光[J].化学通报,1996,6:32-36.

[5]雷丽红,雷春华.蒽类荧光染料的荧光性质以及其化学发光效应[J].光谱实验室,2001,18(6):703-705.

[6]李承志,廉世勋,吴振国等.中位取代蒽类染料的荧光及其化学发光性质[J].光谱实验室,2003,20(3):455-458.

[7]LeeChil2Won,JooSang-Woo,KoJaejungetal.Chemilumi-nescencepropertiesofcopolyesterscontainingredandbluechromophores[J].SyntheticMetals,2002,126(6):97-104.

[8]ParkHoon2Young,GeumNeri,KoJaejungetal.Chemilumi-nescencepropertiesofpolymericbluefluorophorescontainingdiphenylanthraceneunit[J].DyesandPigments,2002,54(7):59-66.

[9]KimDae2Wook,LeeChil-Won,JooSang2Wooetal.Chemilu-minescencepropertiesofpolyurethanefluorophorescontainingredandbluechromophoremoieties[J].JournalofLumines-cence,2002,99(10):205-212.

[10]CheonJong-Woo,LeeChil-Won,GongMyoung-Seonetal.Chemiluminescencepropertiesofbluefluorophorescontainingnaphthaleneunit[J].DyesandPigments,2004,61(4):23-30.

[11]ShimJ2J,LeeC-W,GongM-S.Chemiluminescencepropertiesofperylene-containingpolymericredfluorophores[J].Syn-theticMetals,2001,124(10):435-441.

[12]ParkJae2Seok,LeeChil-Won,GongMyoung-Seon.Prepara-tionandchemiluminescencepropertiesofperylene–containingpolyimidesaspolymericredfluorophores[J].SyntheticMet-als,2003,132(1):177-184.

[13]支正良,杨绪杰,陆路德等.影响双(22丁氧羰基23,4,62三氯苯基)草酸酯化学发光体系的因素[J].应用化学,1998,5:77-79.

[14]CranorEarl.Highoutputchemiluminescentlightformulations[P].US6126871,2000-10-03.

[15]张晓丽,李海英,于大勇等.双(62甲酸异戊酯22,42二氯苯基)草酸酯的合成及化学发光性能研究[J].抚顺石油学院学报,2000,20(4):22-24.

[16]李斌,苗蔚荣,程侣柏.化学发光材料双(2,4,62三氯苯基)草酸酯的合成[J].精细化工,1997,14(6):37-38.

化学研究论文篇3

摘要:化学教育的核心是培养学生的科学素养,把美育通过塑造学生心灵美、向学生展示化学的自然美、挖掘化学的科学美、感受人类创造的社会美、追求教学的艺术美等措施渗透在化学教育、教学中,以培养学生树立正确的科学品质、科学观、科学能力等科学素养。

关键词:科学素养化学教学自然美科学美社会美

美在化学中无处不有、无处不在,学生只有具备了较高的美育素养,并在教师的教导下才能形成积极的审美情趣,才能去发现美、感受美、欣赏美、创造美,这样才符合新课程的理念,符合素质教育全面发展的要求。那么,如何在化学教学中渗透美学因素,培养学生的审美素质,让学生充分领略化学之美呢?笔者据多年在教学中的体会和感受总结以下几点相关措施:

一、开启学生美好的心灵,健全学生的人格

苏霍姆林斯基说“美是一种心灵的体操──它使我们精神正直,良心纯洁,情感和信念端正”。美育的社会功能在于全面培养人,它是从塑造美的心灵着手,而化学美育作为学校素质教育的一部分,我们教师又是课堂的设计者和指挥者,是学生智慧的启迪者和挖掘者,更是学生心灵的塑造者和培养者,在化学教学中应不失时机地挖掘教材和化学史中的美育因素,激发学生的情感,启迪他们的心智,培养学生美的心灵。

例如我们可以通过拉瓦锡空气成分发现过程的学习,让学生深深地认识到科学研究过程中美的真谛在于求真,作为科学家最大的美德是严谨的科学态度;可以通过我国著名化学家侯德榜改进纯碱生产的历史背景和过程的介绍,向学生渗透我国化学家的思想品质之美,因而激发学生的报国之志;可以结合碳酸钙在自然界中的循环变化,通过录象和多媒体课件向学生展示我国的溶洞奇观,让学生欣赏浙江省桐庐县“瑶琳仙境”、北京石花洞中那“洞天福地”等等的大自然的鬼斧神工之美,充分认识到了祖国河山的无限美好和大自然的力量,从而激发关心自然和热爱祖国之情。

还可以紧扣“石灰石生石灰熟石灰碳酸钙”的这一转化,借用明朝于谦的《石灰吟》启迪学生形成积极的人生观、价值观,进而塑造完美的人格等等。“化学给人以知识,化学史给人以智慧”,化学史中有举不胜数的真善美事例从心灵深处感染着学生。

二、感知自然界物质之美,激发学生学习的好奇心

自然界形形色色的物质及生机勃勃的各种变化能培养人的科学直觉——探求自然界的好奇心,而化学科学恰恰起源于人对自然界的好奇心然后去探求其奥秘,自然界物质所呈现出来的色彩、形态、结构、变化之美能使人产生心灵上的共鸣,引起震撼,并进一步唤醒人们对大自然的热爱。

在化学教学中引导学生透过现象,体会物质多样性中的统一之美,物质结构的层次之美,感受晶体、分子、原子结构中无所不在的对称、稳定、均匀、平衡之美,用美的体验激发学生对和谐的追求和创造。

譬如在讲解碳单质物理性质的差异性时,可以通过课件生动地向学生展示“金刚石中每个碳原子与周围呈正四面体排列的碳原子成键,仿佛金字塔般优美壮观,缔造了金刚石的坚硬;石墨由六边形构成的网状碳原子平面以0.335nm的间距一层一层地叠在一起,显示了石墨的性质和谐、稳定;C60分子由12个五边形和20个六边形构成的多面体的每个顶点上有一个碳原子,每个五边形面的周围环绕着5个六边形面,是一个由60个碳原子构成的足球状的球体结构,展示了C60结构完美的对称性”。这样可以让学生直观地感受到化学物质形态、内部结构的美,从而大大激发学生学习化学的好奇心,提高学习兴趣和动力。转三、感悟化学的科学美,培养学生学习的兴趣

著名的物理学家杨振宁大师说过“科学是美的,每个科学家都有这样感觉”,化学科学也不例外。化学是一门自然科学,科学的目的在于揭示自然的奥秘,呈现自然的真貌,反映自然的规律。自然界在外观上纷繁复杂,似乎杂乱无章,但在实质上和谐统一,具有很强的规律性、系统性、逻辑性等很多因素。化学科学美表现在如下几点:

1.化学理论美。化学理论是化学变化规律和化学现象本质联系的归纳与总结,它集中体现了物质化学运动的和谐统一美。教师要善于利用课堂教学把化学事实和化学理论中所蕴含的美揭示给学生。

2.化学变化美。化学变化的实质是有新物质生成,在变化过程中会产生各种十分美丽的现象,恰恰因为这点,我们学生对化学产生浓浓的学习兴趣,然后从这些复杂的具有魅力的现象中悟出它们的内在实质之美。

3.化学实验美。化学实验是美的现象在一定范围内的再现和再创造,任何一个成功的化学实验,会使学生感受到自然美和艺术美的魅力,得到真理的直观感受。从实验中获得感性的、直观的、美的现象,可以激起学生的热情,去追求微观的本质和规律。我们教师可以充分利用化学实验教学向学生展示化学的魅力,如实验室中晶莹剔透的玻璃仪器、流畅的装置设计、教师规范的操作、令人惊叹的实验现象都能够诱发学生的兴趣,引起学生情感上的共鸣。

总之,化学教师在向学生进行传道、授业、解惑的同时,必须还要充分挖掘教材中的美育因素,并有机地融入教学之中,让学生在心理上产生美的感受,在情感上产生美的共鸣,在学习上受到美的熏陶,使学生在审美的愉悦中掌握化学知识和技能、欣赏化学美、体验化学美,领略化学之美。从而使美育和智育等达成和谐的统一,最终达到提高化学教学质量目的并使学生终生受益。

参考文献:

[1]***《基础教育课程改革纲要(试行)》课程目标

[2]《化学教育》2009年第3期杭义萍蔡明招诠释“魅力化学”发挥化学魅力的教育功能。

化学研究论文范文精选

转载请注明出处学文网 » 化学研究论文范文精选

学习

彼得·卒姆托

阅读(23)

本文为您介绍彼得·卒姆托,内容包括彼得卒姆托作品,彼得·卒姆托简介翻译。彼得·卒姆托:1943年生于巴塞尔,曾受过细木工、设计师和建筑师的训练。从1979年开始在瑞士格劳宾登州哈尔登斯泰因开办事务所。同时作为USl建筑学院教授。曾获主

学习

美术学论文范文精选

阅读(24)

本文为您介绍美术学论文范文精选,内容包括美术学论文引言万能模板,美术学论文选题方向。美术学论文篇1美术教育是实施素质教育、培养学生创新能力的最有效手段,它独特的优势,就是可以在发展学生艺术个性的基础上开发学生的创造潜能。所以,

学习

护理干预论文范文精选

阅读(19)

本文为您介绍护理干预论文范文精选,内容包括护理干预性论文怎么写,护理影响因素分析类论文。护理干预论文篇11资料与方法

学习

浅谈如何控制产销差

阅读(24)

本文为您介绍浅谈如何控制产销差,内容包括如何降低产销差率,年终如何降低产销差率。摘要:水资源缺乏,且日益严重,2004年我公司的产销差高达29.8%,造成了水资源及能源的极大浪费,今年通过水漏失控制、用户管理及水表管理、供水系统日常维护及

学习

谢灵运和他的《山居赋》

阅读(51)

本文为您介绍谢灵运和他的《山居赋》,内容包括谢灵运山居赋原文,谢灵运所作的山居赋。关键词:谢灵运;《山居赋》;文学价值

学习

信息技术论文范文精选

阅读(29)

本文为您介绍信息技术论文范文精选,内容包括信息技术论文题目大全,新一代信息技术论文3000字。信息技术论文篇1网络为青少年提供了一个广阔的学习空间,大大拓宽了他们的求知途径,有助于他们开阔视野、促进学业;网络也为他们提供一种自由

学习

高中地理的学习方法

阅读(25)

摘?要:地理是高中的一门比较重要的学科,但是在地理中有一些内容比较偏逻辑性,学生在学习的过程中存在着一些困难,易产生厌学的情绪。本文就高中地理的学习方法进行了分析。

学习

化学平衡移动的应用

阅读(20)

本文为您介绍化学平衡移动的应用,内容包括化学平衡移动的解题方法和技巧,化学平衡移动的总结。摘要:大多数化学反应的最终结果是化学平衡,而平衡是有条件的、相对的,一旦外界条件改变,平衡就会发生移动。我们可以根据平衡移动的原理来控制平

学习

金属材料的腐蚀与防护

阅读(21)

本文为您介绍金属材料的腐蚀与防护,内容包括金属的电化学腐蚀与防护,金属材料腐蚀与防护发展前景。摘要:本文中结合金属腐蚀机理,对海洋腐蚀防护措施和井下腐蚀的主要预防进行了分析,以供参考。

学习

舞蹈毕业论文范文精选

阅读(21)

本文为您介绍舞蹈毕业论文范文精选,内容包括舞蹈生毕业论文开题报告模板,心声舞蹈毕业论文。舞蹈毕业论文篇1【摘要】舞蹈R凳瞧胀ǜ咝V械奶厥庾ㄒ担它自身的诸多客观因素决定该专业在毕业论文环节不能与其他院系一刀切。一方面,舞蹈专业

学习

浅谈接受美学

阅读(16)

本文为您介绍浅谈接受美学,内容包括西方美学经典文本导读,接受美学对文本解读的意义。摘要接受美学是由德国文艺学教授姚斯(HansRobertJauss)所提出的概念,该理论对于研究文学理论及文学翻译有着很重要的引导作用,但是要理解该理论是非常难

学习

中国典籍与文化

阅读(20)

本文为您介绍中国典籍与文化,内容包括中国典籍与文化期刊,中华典籍导读。历史乱弹(之三)葛兆光

学习

浅析语用学中的礼貌原则

阅读(17)

本文为您介绍浅析语用学中的礼貌原则,内容包括浅谈语用学的合作原则和礼貌原则,语用学礼貌原则简析。关键词:语用学礼貌原则英语教学

学习

美术学论文范文精选

阅读(24)

本文为您介绍美术学论文范文精选,内容包括美术学论文引言万能模板,美术学论文选题方向。美术学论文篇1美术教育是实施素质教育、培养学生创新能力的最有效手段,它独特的优势,就是可以在发展学生艺术个性的基础上开发学生的创造潜能。所以,

学习

护理干预论文范文精选

阅读(19)

本文为您介绍护理干预论文范文精选,内容包括护理干预性论文怎么写,护理影响因素分析类论文。护理干预论文篇11资料与方法

学习

信息技术论文范文精选

阅读(29)

本文为您介绍信息技术论文范文精选,内容包括信息技术论文题目大全,新一代信息技术论文3000字。信息技术论文篇1网络为青少年提供了一个广阔的学习空间,大大拓宽了他们的求知途径,有助于他们开阔视野、促进学业;网络也为他们提供一种自由

学习

书面表达范文精选

阅读(19)

本文为您介绍书面表达范文精选,内容包括书面表达典型例文解析,英语书面表达范文10篇。一、写作前

学习

刮伦集合范文精选

阅读(232)

我国春季多大风,这是因为我国属季风气候区,冬季受西伯利亚冷高压影响,多偏北风;夏季受太平洋副热带暖高压影响,多偏南风。春季则是冬夏季风交替转换时期,冷空气和暖湿气流此消彼长,互不相让,特别在我国北方,春季隔三岔五便有一股冷空气侵入,气压梯

学习

冬至节气九九歌精选

阅读(22)

本文为您介绍冬至节气九九歌精选,内容包括冬至节气歌完整版,冬至的节气歌。冬至是二十四节气中最早制订出的一个,时间在每年的公历12月21日~23日之间。下面是搜集整理的冬至节气九九歌精选,希望对您有帮助。更多精彩内容尽在,敬请关注。