摘要:本文对效用函数理论进行了分析,讨论了假定消费者在有预算约束的条件下,如何实现其效用最大化的问题。
关键词:效用函数 边际效用 效用最大化
一、效用及效用函数的定义
什么是效用?在经济学中效用是指消费者在从消费某种商品或劳务中所获得的满足程度,那么一种商品对消费者是否具有效用和效用的大小,就取决于消费者是否有消费这种商品的欲望和这种商品满足消费者欲望能力程度。
消费者从不同的商品消费中所获得的效用与其消费的各种商品的数量关系便是效用函数.若用u表示在一定时期内消费者消费n种商品所获得的效用总和,用Xi表示i种商品的消费数量,则效用函数[1-2]可表示为u=,(x1,x2…,xn)。
通常情况下,随着商品消费的数量的增加,效用也随之增大.
二、边际效用及边际效用递减规律
边际效用是指消费者在一定时间内每增加一单位某种商品的消费所得到的总效用的增加量.假设u具有各阶连续的编导数,且其它商品的消费数量固定在某一值时,则U与Xi的关系为 记为:其中, 为第 种商品的边际效用,
一般地, ,即 是商品消费数量的减函数,这就是经济学中著名的戈森第一法则即边际效用递减规律。
二、尢差异曲线和预算线
无差异曲线是用来表示n种商品的不同数量组合给消费者带来完全相同效用的一条曲线。若假设n=2,则其效用函数为:由定义可知,对于给定的 ,有
则所有能够使消费者获得相同效用 的两种商品组合的形成轨迹便是无差异曲线,此曲线上任何两点所对应的商品组合带给消费者的效用是一样的。
假设消费者在一定时期内消费了n种商品,则可以得倒无差异曲线的推广定义
预算线又称为预算约束线、消费可能线和价格线.预算线表示在消费考收入和商品的价格给定的条件下,消费者的全部收入所能购买到的两种商品的各种组合。
假设商品1、商品2的购买量分别为 、X2,价格分别为 表示消费者的既定收入,那么相应的预算等式为 由此一次函数确定的一条直线即是预算线。
预算线方程同样可以推广到消费,z种商品的情形:
四、效用的最大化的均衡条件
在消费决策中,作为经济人,消费者必然追求消费效用的最大化,即使消费者的欲望达到最大程度的满足。假定在消费者收入 和为第 种商品的市场价格 既定的条件下,消费者消费效用最大化的问题转化为最优化问题: 下面用拉格朗日乘数法来求其解:令
由方程组其中, 是效用最大化的限制条件, 是在限制条件下 消费者实现效用最大化的均衡条件。
转载请注明出处学文网 » 经济学中效用函数的研究