摘要: 我国高铁建设发展突飞猛进,已成为对外的一张靓丽名片,高铁安全问题越来越受到人们密切关注,精密工程测量技术是确保高铁系统安全运行的基本前提。本文对高速铁路精密工程测量技术相对传统铁路测量技术的特点进行了充分的分析和论述,以便于高速铁路管理人员对高速铁路精密工程测量技术的掌握和使用。
Abstract: The development of high-speed railway construction in China is rapid very much, and it has become a beautiful foreign name card, at the same time, more attention has been paid to the high-speed rail security. Precision engineering measurement technology is the basic premise of the safe operation of the high-speed rail system. In this paper, the characteristics of the technology of precision engineering measurement of high-speed railway relative to traditional railway measurement technology are analyzed and discussed fully, in order to facilitate the high-speed railway staff to grasp and use this technology.
P键词: 高铁;精密;工程;测量
Key words: high-speed railway;precision;engineering;measurement
中***分类号:U238 文献标识码:A 文章编号:1006-4311(2017)15-0126-02
0 引言
高速铁路对轨道的精度、平顺性等几何参数要求十分严格,要求以毫米级的标准来控制各部分的测量精度。从这个角度来讲,高速铁路也属于精密工程测量范畴。与传统铁路工程测量技术相比,高铁工程测量技术对测量仪器、测量方法等要求都更加严格,而且测量精度要求精确到毫米级。我们将适用于高速铁路工程测量的技术体系叫作高速铁路精密工程测量。
1 传统的铁路工程测量方法和不足
1.1 传统的铁路工程测量方法
在铁路工程勘测与线路设计中,传统铁路工程测量技术是将线路中线控制桩作为坐标基准,从初测开始,到定测,再到线下测量、铺轨测量,依靠经纬仪和钢尺逐步展开轨道测量工作。
①初测。初测阶段主要涉及导线平面控制测量和水准高程控制测量两项主要任务。平面控制测量的坐标基准为1954年北京坐标系,测角中误差12.5"(25"),导线全长相对闭合差:光电测距1/6000,钢尺丈量1/2000。
高程控制测量的坐标基准为1956年黄海高程/1985年国家高程基准,采用五等水准(30)精度标准。
②定测。根据初测结果,以初测导线的精度指标放出交点、直线控制桩、曲线控制桩(五大桩)的实际参数。
③线下工程施工测量。线下工程施工测量主要以定测阶段得到的参数以及初测水准点作为坐标基准,逐步测放出高程参数。
④铺轨测量。通过经纬仪穿线法进行直线测量,通过用弦线矢距法/偏角法进行曲线测量,以此得到精确的铺轨精度数据。
1.2 传统的铁路工程测量方法的缺陷
上述主要测控工序主要通过钢尺、经纬仪等完成测控,只能用在对轨道线形精度要求较低的普速铁路工程的测量中。随着电子水准仪、GPS、全站仪等先进测量仪器的开发应用,以钢尺、经纬仪为主的传统铁路轨道测量技术的劣势逐渐显现出来,主要表现在:
①测量精度低:传统铁路工程测量技术对导线方位角测量精度的规定较低(25″)。实际施工中对导线方位角进行复测时常常出现曲线偏角超限现象,施工队不得不调整曲线要素来保证正常施工秩序。该方法基本能满足普通速度的列车对行车舒适度和安全性的要求,但如果是高速列车,将无法达到运行要求。
②线路平面测量可重复性差:以中线控制桩为坐标基准,无法实现对平面高程的分级测控,仅通过定测得到的坐标参数全面控制线路精度,如果中线控制桩连续丢失,恢复时十分困难,客观上会耽误工程测量进度。另外,分级平面控制网的缺失使得工程测量始终缺少稳固的平面控制基准,施工完毕后会直接将线路中线控制桩毁掉,不可重复利用,也就不能采用统一的平面控制基准进行轨道测量。
③平面坐标系投影差大:采用1954年北京坐标系30带投影,投影带边缘边长投影最大变形值为340mm/km,使用全站仪、GPS进行测量放线可能会出现较大的误差。
2 高速铁路精密工程测量的内容
高速铁路精密测量主要涉及平面高程控制测量、线下工程施工测量、构筑物变形测量、轨道施工测量、竣工测量以及铁路投入运营后的运营维护测量。
3 高速铁路精密工程测量技术的特点
在铁路工程勘测以及对平面线形的测控工程中,传统测量方法主要采用定测中线控制桩为坐标基准,施工单位通常在工程全面竣工后直接将中线控制桩损毁,这就使得铁路平面测控工作失去了可参照的坐标基准,如果铁路在工后或者投入运营后需要对线路进行复测,就只能使用相对测量法完成完成测量任务。严格来讲,这种测量模式在普通速度铁路轨道测量任务中基本不会出现问题,但是距离高铁线路测控要求尚有一大段差距。高铁线路精度非常高,线形参数都以毫米级精度标准进行测控。相对测量所得到的参数远远达不到高铁毫米级的精度指标,应该采用绝对测量技术构建一套十分精确的精密测控体系,才能确保实现毫米级的测控目标。
3.1 “三W合一”的测量体系
高速铁路工程测量的平面高程控制网,按施工阶段、测量目的及功能不同分为:勘测控制网、施工控制网、运营维护控制网。我们把高速无砟轨道铁路工程测量的这三个阶段的测量控制网,简称为“三网”。勘测控制网、施工控制网、运营维护控制网均采用CPI为基础平面控制网,以二等水准基点网为基础高程控制网,简称为“三网合一”。
3.2 高速铁路平面控制网的分级布网
①平面控制网分级布网的原则。 如***1所示,高速铁路工程测量平面控制网应在框架控制网 (CP0)基础上分三级布设,第一级为基础平面控制网 (CPI),第二级为线路平面控制网(CPⅡ),第三级为轨道控制网(CPⅢ)。
②各级平面控制网的主要技术要求。高速铁路工程平面控制测量各级平面控制网的主要技术要求见表1。
3.3 高程控制测量的精度标准
高速铁路工程测量的高程系统应采用1985国家高程基准,高程控制网分二级布设,第一级线路水准基点控制网,为高速铁路工程勘测设计、施工提供高程基准,采用二等水准测量等级控制;第二级轨道控制网(CPⅢ),为高速铁路轨道施工、维护提供高程基准,采用精密水准测量等级控制。高程控制网的技术要求见表2。
3.4 CPⅢ自由测站边角交会网测量
作为高铁轨道敷设加密基标以及轨道精调基准的CPⅢ为轨道控制网,在高铁轨道测控中发挥了重要作用。按照测控要求,控制网中各点位之间的距离应设为60m,以确保点位坐标基准为工程测控提供精确的测控参数。在实际测控中,必须按照设计要求通过自由测站边角交会网组建测控网,以CPI/CPⅡ作为坐标基准以固定数据进行平差约束。***2为CPⅢ自由测站边角交会网主体结构。该控制网将自由测站之间的距离设为120m,各测控点位包含3个自由测站点的距离、方向交会。
相对于与常规导线网测量技术而言,CPⅢ自由测站边角交会网测量技术的应用优势十分明显,主要体现在以下几方面: ①CPⅢ自由测站边角交会网中均匀分布的点位有助于精确控制轨道敷设加密基标准以及精调参数。②CPⅢ自由测站边角交会网结构对称,点位均匀,***形整体强度较高,各个点位有三个方向交汇,观测余量多,这对实现精确测控大有裨益。③相邻点位之间的相对精度比较精确,且具有良好的兼容特点,可以保证轨道平顺。④控制点采用强制对中标志,自由测站不存在对中误差,因此测控精度就不会受到点位对中点误差的干扰。
3.5 构筑物变形监测
高速铁路轨道走线长,轨道施工涉及隧道、路桥、涵洞等重要节点的施工内容,施工任务繁重,而且轨道沿线地质状况复杂,一定程度上增加了施工难度。另外,针对无砟轨道铁路测控工程,要特别注意对线下构筑物变形的测控,该环节可以为设计、施工提供精确的参数依据,同时与铁路投入运营后对线路及轨道系统的运行及维护工作息息相关,因此,一定要注意该环节的测控质量。
4 结语
近年来,随着高速铁路在铁路客运系统的普及应用,百年来一直沿用至今的传统铁路工程测控技术逐渐表现出与现代铁路客运系统不相适应的特点。为了提高国内铁路系统发展水平,我国不断学习国内外高速铁路先进测控技术,目前已掌握了高速铁路精密工程测量技术,为适合本国国情的高铁精密工程测量模式的成形打下了坚实的基础。高铁精密工程测量技术在我国的应用,为国内高铁工程的测控提供了精确的技术指标,为我国建设世界一流的高速铁路提供了技术支撑,为高速铁路的安全运行提供了保障。
参考文献:
[1]王长进.中国高速铁路精密工程测量技术.
[2]TBl0601―2009,高速铁路工程测量规范[S].
[3]朱镇波,滕松.精密工程测量及其在铁路中的应用[J].科技风,2016(03).
[4]杨安明.论高速铁路精密工程测量“三网合一”[J].企业科技与发展,2011(14).
[5]周东卫.高速铁路精密工程测量管理关键控制环节及对策[J].工程勘察,2015(06).
转载请注明出处学文网 » 浅谈高速铁路精密工程测量技术的特点