[关键词]流体力学;计算;解法
计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、设计是CFD 技术应用的重要领域之一。
计算流体力学的历史虽然不长,但已广泛深入到流体力学的各个领域,相应地也形成了各种不同的数值解法。就目前情况看, 主要是有限差分方法和有限元法。有限差分方法在流体力学中已得到广泛应用。而有限元法是从求解固体力学问题发展起来的。近年来在处理低速流体问题中,已有相当多的应用,而且还在迅速发展中。
一、基本方程
为了说明计算流体力学主要方法,需先了解流体力学运动的基本方程的性质和分类。流体力学的基本方程是在19 世纪上半叶由C.-L.-M.-H.纳维和G.G.斯托克斯等人建立的,称为纳维-斯托克斯方程,简称N-S方程。二维非定常不可压缩流体的N-S方程为:式中u、v为沿着x、y方向上的速度分量;t为时间;p为压力;ρ为密度;ν为运动黏性系数。在不同条件下,N-S方程的数学性质也不一样。N-S方程描述黏性流体随时间而变的非定常运动。时间项和方程右边的高阶导数项决定方程的性质。它同二维热传导方程类似,属于抛物型方程。黏性流体的定常运动是将原方程中的时间项省去。此时N-S方程的性质,取决于它的高阶导数项,和拉普拉斯方程一样,为椭圆型方程。
二、迭代解法
这是用逐步近似求解联立方程的方法,也是椭圆型微分方程的主要数值解法。此法程序简单,存储量与运算量均比较小,一般先假定一组初值,然后求每个网点上的新值。以五点格式为例,网点上的新值是邻近四点初值的平均。新值求出后,旧值还要保留,以便计算其他各点的新值。这种简单迭代收敛很慢,现已很少使用。但若稍加改进,用算出的新值冲掉旧值,并引进一个松弛因子,以加速收敛,将算出来的新值与原来的旧值加权平均,就成为50年展起来的逐次超松弛法。
三、时间相关法
这是用非定常方程求解定常问题的方法,常用于求解N-S方程和欧拉方程等。虽然用的是非定常方程,但所解的并不是非定常问题。根据给定的初始条件以及随时间改变的约束条件,非定常问题是研究流动随时间的演变过程。这种非定常行为和给出的初值很有关系。然而时间相关法的初值,原则上是随意选取的,只是须满足定常问题所规定的边界条件。在求解过程中,流动随时间的变化并不代表真实的物理过程。当时间足够长后,未知函数值逐步与时间无关,便渐近趋于正常解。所以时间相关法实际上也是一种迭代法,时间变量只不过是用来记录迭代的次数而已。
四、交替方向隐式法
流体力学的应用问题,往往是二维和三维的空间问题。由于稳定性的要求,时间步长受维数的限制,维数愈高,要求时间步长愈小,计算工作量也愈大。50年代中期D.W.裴斯曼和J.道格拉斯等人提出所谓交替方向隐式法,以加快计算速度。如在二维非定常方程中,第一步先对x的导数用隐式差分,而y方向的导数则用前一个的数值。第二步对 y的导数用隐式差分,x方向的导数则用第一步算出来的数值。这一方法的优点是稳定性好,有足够的二阶精度,所产生的差分方程是三对角矩阵方程,便于求解。
五、有限基本解法
解位势流动的一种数值方法。航空工业中的低速飞机设计采用位势理论计算各种气动力参数,就是求解二维或三维拉普拉斯方程。在经典流体力学中,用基本解的叠加来解拉普拉斯方程的做法是很成功的。这种方法的要点是:用源、汇、偶极子的分布代替机翼和机身对流场的影响。它们的强度由边界条件确定,结果需要求解积分方程。对一些简单情况可以求解,对一般情况则比较困难。高速电子计算机的出现使这种积分方程的数值解法也有了突破。其主要思想是把积分方程离散化,积分方程代表源、汇等奇点在空间连续分布的总和。例如,若把机翼和机身表面分割成若干个小单元,每个单元上的奇点强度取平均值。把这些奇点的总和叠加起来,就得出流场总的效应。因此,它用有限项的求和来代替积分,而最后要解的是一组代数方程。由于基本解都是具有奇点的函数,所以这种方法又称为有限奇点法或鳞片法。
六、跨声速流动数值解
跨声速流动的流场是既有亚声速区又有超声速区的一种混合流场。在不考虑黏性影响和小扰动的情况下,定常二维速度势方程是混合型的,即V嗞xx+嗞yy=0,式中V是来流马赫数Ma∞与嗞x的复杂函数。V>0是亚声速区(椭圆型),而V
七、超声速流动数值解
在超声速流动中,主要问题是如何处理激波。用数值方法处理超声速流场中的激波现有两种方法:一是激波捕捉法,另一是激波装配法。激波捕捉法对激波本身并不需作任何特殊处理,只是在计算公式中,直接或间接地引进“黏性”项,自动算出激波的位置和强度,以“捕捉”激波。(编辑/穆杨)
转载请注明出处学文网 » 浅谈计算流体力学的几种解法