数学教案第1篇
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容.
2.了解平均数的意义,会计算一组数据的平均数.
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.
(二)能力训练点
培养学生的观察能力、计算能力.
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯.
2.渗透数学来源于实践,反地来又作用于实践的观点.
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算.
2.教学难点:平均数的简化计算.
3.教学疑点:平均数简化公式的应用,a如何选择.
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲78686591074
乙9578768677
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
869110072938990857595
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.
2.平均数的概念及计算公式
一般地,如果有n个数.
那么①
叫做这n个数的平均数,读作“x拨”.
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.
3.平均数计算公式①的应用
例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温.
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同.
例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210208200205202218206214215207195207218192202216185227187215
计算它们的平均质量.(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法.
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.
讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.
3.推导公式②
一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么,
因此,
即②
为了加深学生对公式②的认识,再让学生指出例2的、、各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.
2.求n个数据的平均数的公式①.
3.平均数的简化计算公式②.这个公式很重要,要学会运用.
方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.
八、布置作业
教材P153中1、2、3、4.
九、板书设计
教学设计示例2
教学目标
(一)使学生了解平均数的意义,会计算一组数据的平均数.了解加权平均数的意义,并会求加权平均数;
(二)会运用平均数的简化运算方法.
教学重点和难点
重点:会计算平均数及运用平均数的简化方法,会运用加权平均数公式.
教学过程设计
(一)引入新课
在初中一年级代数课本P106的“读一读”那一节,讲的是求平均数.有这样一例题:
女子排球队共有10名队员,身高(单位:米)分别为:
1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.
求这个队的队员平均身高是多少?
解:求这个平均数的计算方法有两个.
方法1:直接计算
方法2:简化计算
观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米.
计算这组数的平均数,得:
因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米
在求一组数的平均数时,只要这组数都接近某一个数,就可以采用这种简化的计算方法.
以上例子告诉我们什么是平均数,怎样求平均数.如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算.
(二)新课
1.平均数
在统计里,平均数是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数.
上面的公式①,就是我们在求女排队员身高平均数的“直接算法”.
当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当
公式②就是我们在求女排队员身高平均数的“简便方法”
例1某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)
342,348,346,340,344,341,343,350,340,342.
求样本的平均数.
解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,
例2从一批货物中取出20件,称得它们的重量如下(单位:千克):
310,308,300,305,302,318,306,314,315,307,
295,307,318,292,302,316,285,327,287,315.
求样本的平均数(结果保留到个位)
即样本平均数为306千克.
解法2:
由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:
10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.
2.加权平均数
设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?
答:混合后的单价为2.50元.这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关.这些食品混合后的售价应该等于
这种平均数叫做加权平均数.
一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据平均数公式①,这n个数的平均数可以表示为
计算加权平均数的公式③,与计算平均数的公式①,实际上是一回事.当一组数据中有不少数据多次重复出现时,用加权平均数公式计算简便些.在公式③中,相同数据xi的个数fi叫做权.这个“权”,含有所占分量轻重的意思.fi越大,表示xi的个数越多,于是xi的“权”就越重.
例3某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).
在例1~例3的求平均数问题中可以看到,平均数能够反映出数据的集中趋势.
(三)课堂练习
若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是______.
(四)小结
1.用样本平均数去估计总体平均数,这是学习平均数的目的.
2.平均数计算公式,平均数简化计算公式,加权平均数计算公式都很重要,应根据具体情况,恰当选取哪个公式
(五)作业
1.数据15,23,17,18,22的平均数是________.
2.5个数据的和为405,其中一个数据为85,那么另4个数据的平均数是______.
(1)105,103,101,100,114,108,110,106,98,102;(共10个)
(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)
4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人.求这个班学生的平均年龄.
5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):
14845,25306,18954,11672,16330
(1)求样本平均数;
(2)根据样本平均数估计,这个商店在该月里平均日营业额约是多少?
6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业所需要的时间,结果如下(单位:分):
80,70,90,70,60,50,80,60.
在这段时间里,该学生平均每天完成家庭作业所需要的时间约是多少?
作业答案与提示:
1.19.
5.(1)样本平均数是17421元;
(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.
根据样本平均数,可估计该学生平均每天完成家庭作业所需时间约为70分.
课堂教学设计说明
1.平均数是统计中的重要概念之一,通过样本平均数来估计总体平均数.样本容量取得越大,则用样本平均数估计的总体平均数越精确,也就是所表示的总体平均的变化趋势越集中于准确值.作业中的第5,6两题就是为体现这种思想而设计的.
2.这一节课的目标是要弄清两个概念(平均数、加权平均数),三个公式(求平均值公式,求平均值的简化公式和求加权平均数公式).
数学教案第2篇
1.进一步理解求平均数的意义,掌握较复杂的求平均数的方法.
2.培养学生灵活计算的能力和解决实际问题的能力.
教学重点
求平均数的意义及较复杂的求平均数的方法.
教学难点
较复杂的求平均数的方法.
教学过程
一、复习准备.
口算【演示课件“求平均数”】
①小明有12本书,小***有20本书,小明和小***平均每人有几本书?
②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?
③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个平均每组投中多少个?
针对第③题提问:
①说出这道题的问题是什么?
②求平均数必须知道什么条件?
③说一说你是怎样计算的?
板书:投中总个数÷组数
二、学习新课【继续演示课件“求平均数”】
(一)出示例1:五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个.全班平均每人投中多少个?
学生分组讨论思考题:
1.例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑.)
2.要求全班平均每人投中多少个,必须先知道什么条件?
板书:投中总个数÷全班总人数.
3.投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?
板书:
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合:(28+33+23)+(10+11+9)=2.8(个)
答:全班平均每人投中2.8个.
教师提问:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?
(二)出示例2:下表是五年级二班3个组投中篮球情况统计表.全班平均每人投中多少个?(得数保留一位小数)
各组人数
12
11
10
平均每人投中数
2.5
3
3.2
教师提问:例2和例1比较,有什么异同?(问题一样,但已知条件不同)
要求全班平均每人投中多少个,要知道什么条件?怎样列式?
板书:
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
__________________________
(3)全班平均每人投中多少个?
__________________________
答:全班平均每人投中________个.
教师:你能列出综合算式吗?
板书:(2.5×12+3×11+3.2×10)÷(12+11+10)
教师强调:求平均数时,有时不能除尽,这时需要根据具体情况取近似值.
三、巩固反馈【继续演示课件“求平均数”】
1.小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页.小亮这一星期平均每天看多少页?
2.判断正误并说明理由.
①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?
A.(28+36)÷(3+2)();
B.(28×2+36×3)÷(3+2)();
C.(28+36)÷2().
②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?
A.(60+56)÷(5+3)();
B.(60+56)÷2();
C.(60×5+56×3)÷(5+3)().
四、课堂总结.
解答求平均数应用题应注意哪些问题?
①明确问题求的是什么平均数;
②总数量÷总份数=平均数
五、布置作业.
1.五年级两个班参加植树活动.一班37人,共植树132棵;二班35人,共植树120棵.五年级平均每班植树多少棵?五年级平均每人植树多少棵?
2.先锋号机帆船出海打鱼.上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨.这条船平均每天捕鱼多少吨?
3.一个班有22个男生,平均身高140.5厘米;有18个女生,平均身高142.5厘米.全班同学的平均身高是多少厘米?
4.敬老院里有老奶奶10人,平均年龄80.5岁;有老爷爷12人,平均年龄73.5岁.求全院老人的平均年龄.(得数保留一位小数)
六、板书设计
平均数
例1、五年级一班分成3组投篮球.第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个.全班平均每人投中多少个?
例2、下表是五年级二班3个组投中篮球情况统计表.全班平均每人投中多少个?(得数保留一位小数)
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合:
(28+33+23)+(10+11+9)=2.8(个)
答:全班平均每人投中2.8个.
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
12+11+10=33(人)
(3)全班平均每人投中多少个?
95÷33≈2.9(个)
综合:
(2.5×12+3×11+3.2×10)÷(12+11+10)≈2.9(个)
答:全班平均每人投中2.9个.
探究活动
捐款
活动目的
加强对平均数意义的理解.
活动题目
少先队员为灾区捐款,五一班有17名男生,平均每人捐款5元;有15名女生,平均每人捐款4元.全班平均每人捐款多少元?
(5+4)÷2=4.5(元)这样列式对不对?为什么?
活动过程
1.学生分小组讨论.
2.学生发表意见.
3.师生共同总结规律,巩固求平均数的方法.
参考意见
教师要把本学期的加权平均数与原来的算术平均数帮助学生区分清楚(算术平均数是一种特殊的加权平均数),如果本题中的男女生人数相等,上面的列式完全正确,但是现在男生人数是17人,女生人数是15人,所以正确列式应该是:
(5×17+4×15)÷(17+15)
巩固练习
少先队员暑假参加登山活动,上山时每小时行2.5千米,下山时按原路返回,每小时行5千米.这次登山平均每小时行多少千米?
分析:
假设上山是10千米,下山也应该是10千米,上山时间是(10÷2.5)小时,下山时间是(10÷5)小时,所以平均速度是:(10+10)÷(10÷2.5+10÷5)千米。
假设上山是30千米,则平均速度是:(30+30)÷(30÷2.5+30÷5)千米.
最后答案都是一样的.(答案:千米)
平均工资
活动目的
培养学生对具体问题分析的能力,发展学生的思维能力.
活动过程
1.教师讲述:某公司有15名职工,对外招聘时称该公司职工月平均工资超过1200元.
职务
经理
副经理
职员
人数(人)
1
2
12
月工资(元)
5000
2000
800
2.提出问题:请分析上面的统计表,你怎样看待该公司公布的这个平均工资?
3.学生分组讨论.
4.学生发表意见.
活动说明
根据统计表分析问题、解决实际问题的能力需要长时间的培养.这道题没有标准答案,关键是让学生明白分析问题可以从多个角度,不要受到约束.
参考意见
该公司骗人,公司职员的工资不到平均数;
公司说的是实话,平均工资超过1200元;
数学教案第3篇
现如今,传统的教学模式已经无法满足小学生学习数学的需求。因此,小学数学教师应当转变教学观念,以学生情况和教材内容为依据,运用科学有效的方式提高教学效率,让学生学到有用的数学知识。在这样的背景下,将案例教学法引入小学数学课堂可以有效地解决上述问题。
关键词:
案例教学法;数学教学;小学数学
随着新课标的大力实施,案例教学法已经被广泛地应用在各年级段多个学科的教学中,并取得了很好的效果。以案例为基础的教学形式很好地契合了新课标中要求教师为学生“提供符合实际生活的、有现实案例的学习环境”的理念,可以让学生在案例学习的过程中提高理解能力,有效促进知识和生活相结合,对教学效率的提升也有着促进的作用。
一、案例教学法的定义
案例教学法起源于20世纪初的哈佛商学院,是以案例作为教学的基本内容而实行的教学策略。案例往往是根据现实生活、社会和自然的真实事件而设计的,其本质上是提出教育的两难情境,没有具体化或程式化的解决方法。在这个过程中,教师成了教学案例的设计者和学生学习的引导者,鼓励并引导学生通过多种形式的学习对案例问题解决整理,并归纳、掌握知识,最终达到教学目的。
二、案例教学法的价值
在教学的过程中,案例教学能够把抽象的数学知识巧妙地融入真实、生动的案例之中,可以让数学知识变得简单、具体,这不仅可以避免小学生因为逻辑思维能力较弱而学习数学会有难度的状况发生,也可以让学生将数学理论自然地融入生活实践之中,让他们发现数学的价值,提高学习热情,进而提升学习质量。数学的灵活性较强,因此数学案例的设计和设置也具有多元化、灵活度高的特征。这有助于让学生在学习数学的过程中培养逻辑思维能力,让学生发现数学知识的联系性和系统性,并且能建立属于自己的数学知识体系,对把新的数学知识融入学生的思维之中也有着重要的作用。
三、案例教学法在小学数学教学中的运用方法
1.制定清晰的案例核心
首先,教师制定的案例必须是真实的、贴合生活内容的,案例的描述必须是一个完整的情境,能够让学生在喜闻乐见的生活案例中实现思维的拓展和能力的延伸,让学生再次遇到类似的问题可以触类旁通。不仅如此,问题必须紧随时代,从而有效提高对学生的吸引力,调动学生学习的积极性。
2.设计多元的案例内容
在设计案例时,内容可以涉及学生喜闻乐见的生活情境,也可以是社会热点、生活中不起眼的细节。针对这个问题,教师必须经常以小学生的视角关注和观察生活,从而设计出能让学生发现数学价值的案例。不仅如此,教师还应当实现资料和参考文献来源的多元化,并根据教学的具体内容和学生的实际情况设计案例。举例而言,在讲解“小数乘法”时,笔者设计并实施了这样的案例:我昨天晚上去逛超市,买了一盒10.5元的蛋糕、一瓶28.8元的玻璃水和一支9.6元的牙膏,你们知道我一共花了多少钱吗?由于掌握了小数加法的计算方法,学生当然可以很快地得出正确答案。这时,笔者追问:我在超市的时候遇到了邻居大妈,她告诉我她看见超市的鸡蛋在促销,每斤3.6元,她买了3.5斤。那么邻居大妈买鸡蛋花了多少钱呢?案例讲述完毕,学生面面相觑。这时,笔者鼓励他们首先列出算式,几乎所有人都能列出3.6×3.5的算式,但是对计算方法却束手无策。这时,笔者引导学生学习小数乘法的相关知识。这样的案例不仅贴近生活实际,而且有助于学生快速地理解题意,只有在此基础上再为其进行计算方法的讲解,才可以有效提高教学效率。
3.潜移默化的案例渗透
在实施案例教学的过程中,小学数学教师必须以学生的认知程度为依据,对案例进行多种方式的呈现,避免因生搬硬套而导致学生难以理解案例的现象发生。另外,案例的分析和解决需要让学生在实践探究、合作交流等多元化的模式中展开,在此基础上扩充知识,总结并归纳出数学的规律和本质,实现能力的迁移和提升。例如,在讲解“测量”的过程时,学生往往对“千米”的意义难以理解。对此,笔者利用案例,让学生通过多媒体的地***功能观看以学校门口为起点,走到哪里是1000米。另外,如果学校的操场是标准的400米田径运动场,教师也可以带领学生到学校的操场走两圈半,感受1000米的实际距离。这种案例实现了知识的形象化,让抽象理论变为具体的实践。学生不仅更有效地理解和掌握知识,也可以激发学习兴趣,提高教学效率。
总之,案例教学法在小学数学教学中的应用不仅符合新课标的要求,也可以实现理论与实践的有效结合,让学生提高知识的应用能力,并且对提高教师的教学效率也有着重要的作用。
作者:陈晓玲 单位:中山市沙溪镇乐群小学
参考文献:
数学教案第4篇
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识理性认识练习反馈总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数()
(2)5是-5的相反数()
(3)与互为相反数()
(4)-5是相反数()
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
师:0的相反数是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的相反数.
2.分别说出9,-7,0,-0.2的相反数.
3.指出-2.4,,-1.7,1各是什么数的相反数?
4.的相反数是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”
[板书]a的相反数是-a.
师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?
.
.
.
提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
巩固练习
(出示投影3)
1.是______________的相反数,.
2.是_____________的相反数,.
3.是_____________的相反数,.
4.是_____________的相反数,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了相反数,归纳如下:
1.________________的两个数,我们说其中一个是另一个的相反数.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的相反数,
____________的相反数是0.3.
2.下列几对数中互为相反数的一对为().
A.和B.与C.与
3.5的相反数是________________;的相反数是___________;的相反数是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
相反数
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是()
A.一个数的相反数一定是负数
B.两个符号不同的数一定是相反数
C.相反数等于本身的数只有零
D.的相反数是-2
(2)下列各组九中,是互为相反数的组数有()
①和②-(-1)和+(-1)
③-(-2)和+(+2)④和
A.4组B.3组C.2组D.1组
(3)下列语句中叙述正确的是()
A.是正数
B.如果,那么
C.如果,那么
D.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页A组2、3.
(二)选做题:课本第62页B组1、2.
十、板书设计
2.3相反数
1.只有符号不同的两个数其中一个是另一个的相反数.
2.0的相反数是0
3.的相反数是.例,……
随堂练习答案
1.略2.CBD
作业答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
数学教案第5篇
1、使学生会借助直观***,利用集合的思想方法解决简单的实际问题。
2、使学生在解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
教具、学具
多媒体课件,答题纸每人一张。
教学过程
一、创设情境,引入新课。
师:课余时间,同学们喜欢参加什么体育活动?(各自说:跑步、跳绳、打球……)
师:刚才同学们都说了自己喜欢的体育活动,今天老师也带来了三(1)班喜欢跳绳和跑步的名单。(出示课件一)
师:请同学们仔细观察,你能从中获得哪些信息?(喜欢跳绳的有8人,喜欢跑步的有9人,有3人既喜欢跳绳,又喜欢跑步)还有呢?喜欢跳绳和跑步的同学一共有多少人?(板书问题)
(让学生说这个问题:有的说一共有17人,还有的说一共有14人……)
师:喜欢跳绳和喜欢跑步的同学到底有多少人呢?那今天就让我们一起走进数学广角,去解决这个问题。(板书课题:数学广角)
二、探究学习,发现规律。
师:刚才同学们对这个问题产生了不同的意见。(教师指着黑板上的问题)那么,我们能不能借助***、表以及你喜欢的其他方式,把这份名单整理一下。要让我们很清楚的看出喜欢跳绳的、喜欢跑步,这两种活动都喜欢的的是哪些同学。
学生画***、表,思考并回答。
(1)先自己想一想,再和小组的同伴们交流一下。
(2)小组讨论:说一说计划用什么方案?
(3)动手在空白纸上画出方案。
(4)小组代表汇报各自的方案,展示并介绍方案。
师:看了这组同学的方案,你有什么想法?有什么问题要问的?
师:现在同学们展示了很多不同的方案,看来用***来表示这份名单,确实很清楚。(指着集合***圈)通常我们就用这种***来表示,同学们请看!(出示课件二,边演示边讲解)这个***表喜欢跳绳的,这个***表示喜欢跑步的。(指着两个圈交叉部分)问:中间这部分表示什么?(表示既喜欢跳绳又喜欢跑步的同学)
师:现在喜欢跳绳和跑步的同学一共有多少人呢?你会列式计算了吗?(在***纸上列式计算)
学生汇报,教师板书列式。
8+9-3=145+3+6=14
8-3+9=149-3+8=14
师:大家用了不同的方法解决了这个问题,这道题目的答案是14人。
三、巩固提高,练习应用。
师:(出示课件三)像这类数学问题在我们生活中常常出现。瞧!贝贝一家人去看电影时就碰上了这样的问题,谁来说一说这是为什么?这样列式计算?(2+2-1=3人)
师:同学们,你们喜欢动物吗?(出示课件四)让我们一起走进动物世界,这些动物你们认识吗?(把书打开)请同学们按要求把***填好。
师:为什么3号动物要填在中间?下面我们去野生动物园看看吧!(出示课件五)动物园这一年一共住了多少种动物?你会列式计算吗?(在答题纸上列式计算)
学生汇报列式,教师板书列式:
5+5-3=7
2+2+3=7
5-3+5=7
师:(出示课件六)前段日子三(1)班还组织了参加了社会实践活动,咱们先看看,他们开展了什么活动?(参观***营,摘草莓)
(1)有25名学生参观了***营;
(2)有30名学生去摘草莓;
(3)有10名学生两项活动都参加了;
(4)有2名学生因病请假,两项活动都没参加。
学生汇报,能提出什么问题,如何列式计算。
四、全堂小结,自我评价。
教者反思——周敬凯
在教材处理上,我选择了更贴近学生生活实际的题材——喜欢的体育活动,改编了教材中的内容,课前先通过调查同学们自己喜欢的体育活动,从学生的实际生活出发,让学生从就感兴趣的题材中感受集合的思想,教学中我联系学生的生活实际,在新旧知识的连接点上设计问题情境,形成学生在认知上的冲突,内心处于一种“平衡——不平衡——探究发现——解决问题——新的平衡”的学习过程。本节课以“喜欢跳绳和喜欢跑步的同学一共有多少人”这一问题,让学生自己提问、解答,当学生解答这问题出现分歧时,再引导学生,借助一种***、表来帮助学生解决这一问题。新授中安排学生们分成小组设计各种***、表以及其他方式,能更清楚的看出喜欢跳绳的、喜欢跑步的和两种都这的同学名单。
现代教育技术已成为学生学习数学和解决问题的强有力的工具。本节课充分利用了多媒体课件,先分别出示两个集合***,分别表示喜欢跳绳的、喜欢跑步的,再把两个集合***进行合并,让学生发现有3人两种活动都喜欢,进而在讲解列式计算时,说明有3人重复计算了,,要8+9-3=14人,并且引导学生用不同的方法解答这个问题。这样将多媒体和网络技术引入教学过程,通过声音、色彩、***像、动画等多渠道传递信息,刺激学生的感官,化抽象为具体,寓趣味性、技巧性和知识性为一体,既活跃了课堂气氛,又让学生轻松、愉快的获取了数学知识,取得了很好的效果。
本节课在练习安排上,我选择了有关动物——这一学生喜欢的题材,通过看动物电影时出现的重叠数学问题的解答,动物园入住动物的总数的解答,让学生通过多层次的练习,进一步学会用集合的数学思想解答这一类数学问题。在本节课最后,我还安排了从“走进社区”的社会实践活动入手,从中发现数学信息,提出数学问题,并用本节课所学的知识解决这些问题。
总之,数学来源于生活,又反过来服务于生活,培养学生解决实际生活问题的应用能力,是数学学科的根本目标。
评课教师——丛喜峰
“数学广角”中的重叠问题是借助学生熟悉的题材,渗透集合有关的思想,并借助直观***解决一些实际问题。本节课的教学有以下几个特点:
一、在探究中领悟数学思想
教师以“喜欢跳绳和喜欢跑步的同学一共有多少人”这一问题让学生思索寻求答案,在寻求答案的过程中,学生出现了分歧和争议。老师并不急于宣布答案,而是引导学生用***、表及其他方式来清楚的表示喜欢跳绳、喜欢跑步和两种活动都喜欢的同学名单。同学们想到的表示方式很多,在探究、交流的过程中,对集合的数学思想有了初步的感悟和认识。
数学教案第6篇
1.理解对数的概念,掌握对数的运算性质.
(1)了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系.
(2)会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算.
(3)能根据概念进行指数与对数之间的互化.
2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力.
3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神.
教学建议
教材分析
(1)对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻画,表示为当时,.所以指数式中的底数,指数,幂与对数式中的底数,对数,真数的关系可以表示如下:
(2)本节的教学重点是对数的定义和运算性质,难点是对数的概念.
对数首先作为一种运算,由引出的,在这个式子中已知一个数和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对的全面认识.此外对数作为一种运算除了认识运算符号“”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.
对数运算的符号的认识与理解是学生认识对数的一个障碍,其实与+,等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难.
教法建议
(1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数和真数的要求,其次对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.
(2)对于运算法则的探究,对层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,让形式的认识由感性上升到理性,由特殊到一般归纳出法则,再利用指数式与对数式的关系完成证明,而其他法则的证明应引导学生利用已证结论完成,强化“用数学”的意识.
(3)对运算法则的认识,首先可以类比指数运算法则对照记忆,其次强化法则使用的条件或者说成立的条件是保证左,右两边同时都有意义,因此要注意每一个对数式中字母的取值范围.最后还要让学生认清对数运算法则可使高一级的运算转化为低一级的运算,这样不仅加快了计算速度,也简化了计算方法,显示了对数计算的优越性.
教学设计示例
对数的运算法则
教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.
2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.
3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.
教学重点,难点
重点是对数的运算法则及推导和应用
难点是法则的探究与证明.
教学方法
引导发现法
教学用具
投影仪
教学过程
一.引入新课
我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.
如果看到这个式子会有何联想?
由学生回答(1)(2)(3)(4).
也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.
二.对数的运算法则(板书)
对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.
由学生回答后教师可用投影仪打出让学生看:,,.
然后直接提出课题:若是否成立?
由学生讨论并举出实例说明其不成立(如可以举而),教师在肯定结论的正确性的同时再提出
可提示学生利用刚才的反例,把5改写成应为,而32=2,还可以让学生再找几个例子,.之后让中国学习联盟胆说出发现有什么规律?
由学生回答应有成立.
现在它只是一个猜想,要保证其对任意都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?
学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.
证明:设则,由指数运算法则
得
,
即.(板书)
法则出来以后,要求学生能从以下几方面去认识:
(1)公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).
(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.
(3)若真数是三个正数,结果会怎样?很容易可得.
(条件同前)
(4)能否利用法则完成下面的运算:
例1:计算
(1)(2)(3)
由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:
.
可由学生说出.得到大家认可后,再让学生完成证明.
证明:设则,由指数运算法则得
.
教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?
有的学生可能会提出把看成再用法则,但无法解决计算问题,再引导学生如何回避的问题.经思考可以得到如下证法
.或证明如下
,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)
请学生完成下面的计算
(1)(2).
计算后再提出刚才没有解决的问题即并将其一般化改为学生在说出结论的同时就可给出证明如下:
设则,.教师还可让学生思考是否还有其它证明方法,可在课下研究.
将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则
(1)了解法则的由来.(怎么证)
(2)掌握法则的内容.(用符号语言和文字语言叙述)
(3)法则使用的条件.(使每一个对数都有意义)
(4)法则的功能.(要求能正反使用)
三.巩固练习
例2.计算
(1)(2)(3)
(4)(5)(6)
解答略
对学生的解答进行点评.
例3.已知,用的式子表示
(1)(2)(3).
由学生上黑板写出求解过程.
四.小结
1.运算法则的内容
2.运算法则的推导与证明
3.运算法则的使用
五.作业略
六.板书设计
二.对数运算法则例1例3
1.内容
(1)
(2)
(3)例2小结
2.证明
3.对法则的认识(1)条件(2)功能
探究活动
试研究如下问题.
(1)已知求证:或
(2)若都是正数且至少有一个不为1,且,则之间的关系是_____________________.
答案:
数学教案第7篇
[关键语]:高职数学;应用型人才培养;案例教学法;教学案例。
高等职业技术教育的培养目标是:培养适应生产、建设、管理及服务第一线需要的,德智体美全面发展的应用型人才。为实现这一目标,各专业所开设的每门课程在教学中必须坚持“以学生为主体,以职业能力为导向,以市场需求为起点,以项目任务为载体,理论实践一体化”的指导思想实施教学,高职数学的教学也无例外。教学方法的改革与创新对实现这一目标有着极为重要的作用,所以结合培养目标及高职学生的知识结构特点进行教学方法的改革迫在眉睫。案例教学巧妙地在理论与实践之间架起桥梁,缩短了教学情境与实际生活情境的差距。通过案例教学,既可解决实际生活中产生的问题,又能达到获取新的知识、巩固基础理论、提高解决问题的技能。有效地运用案例教学法还有助于学生创新性思维的培养,从而在学生职业素质及个人能力的塑造中发挥重要作用。在各专业课程的教学中,案例教学法已有较为普遍的应用,并收到一定的效果,但在高职数学课程教学中的应用还不多见。
传统的数学教学过程常常以教师为中心,围绕教材,从概念到定理,从定理到公式,关注的只是向学生灌输了哪些知识,致使教学与生活脱离、理论与实际脱节,忽略了真理形成的过程,忽视了学生学习潜能的开发。导致学生看不懂、理解不透、掌握不好,更谈不上运用学到的数学知识去解决实际问题。而案例教学可以创设富有启发的学习情境,打破教师讲学生听的单向信息传递模式,充分发挥学生的主体作用。无论是"从案例分析到概念建立",还是"从数学理论到解决问题的方法",都充分发挥学生的主动性。引导学生在案例的分析中发现概念;在解决问题中建立理论、总结方法。从中发现数学知识与实际问题间的密切联系,为运用这些知识较好地解决实际问题奠定基础。久而久之可以促使学生的思维不断深化,大大提高分析问题、解决实际问题的能力。以下结合本人在高职数学教学改革中进行案例教学法的实践谈一点个人的体会。
1.用一个典型案例导引出多个数学概念,使得抽象的数学概念不再是那么生硬的直接塞给学生,而是自然流畅的出现。让学生知道概念产生的原因和作用,有利于理解和正确运用这些数学概念分析问题、解决问题。
如不定积分概念的教学中我是如下处理的:
提出案例:某段高速公路上限速80公里/小时,某车在该路段出了交通事故,交警到现场测得该车的刹车痕迹有30米,又知该车型的最大刹车加速度是-15米/秒2。交警判其超速行驶,承担事故的主要责任。车主不服,你能给出可靠的理由吗?
先把问题交给学生,让他们进行分析找出解决问题的途径,从而导引出一些数学概念和寻求解决问题的方法。学生们分析到问题的答案就是该汽车在刹车前的初速度,而已知条件是汽车在刹车中的加速度。由汽车在刹车中的速度与加速度的关系、路程与速度的关系,导引出原函数的概念;怎样找到该问题中加速度的原函数呢?再由原函数的多值性导引出不定积分的定义。这样使得一些数学概念的产生顺理成章,也便于学生理解接受。在解决该问题的计算中,直接积分法也就水到渠成了。
类似地,微分方程的概念、矩阵的概念、线性规划有关问题等都可以按这种方式,选择一个合适的案例顺势切入。
2.遵循从具体到抽象,从特殊到一般的认识规律,用多个案例说明某一个数学概念,还原数学概念的原貌和产生的背景。
如定积分的概念教学中我安排了三个案例:
案例1:变速直线运动的路程问题
设某一物体以速度v=2t(米/秒)作变速直线运动,求它在t=0到t=4秒内所通过的路程。
引导学生作如下的设想,实现从具体到抽象的过度。先把时间分割成若干段,在每一个小时间段上近似看作匀速运动(不妨假设该时间段末端对应的瞬时速度为该时间段上的速度)。
比如,分0.5秒为一时间段,这样计算的路程的近似值是 S=18(米);
再分0.4秒为一时间段,这样计算的路程的近似值是 S=17.6(米);
若分0.2秒为一时间段,这样计算的路程的近似值是 S=16.8(米);
启发学生讨论,是不是时间段分得越细小,所计算的路程与实际路程就越接近?我们按照这种思路走下去,通过分割、近似、求和、取极限就得到所通过路程的数值为(米)
案例2 变力沿直线所做的功
设质点M受力F=2x的作用沿x轴由原点移动到点(2,0)处,求力F对质点M所作的功。(让学生仿照案例1的做法自己完成)
用以上同样的方法,通过“分割、近似、求和、取极限”几个步骤.我们可以得到力F对质点M所作的功为:
案例3 求曲边梯形的面积
曲线与直线、以及x轴所围成的曲边梯形是一种不规则的***形,求它的面积没有一般的公式可用,我们可以采取以上的思路与方法来解决这个问题。我们用一个可以验证其正确性的例子。比如,求由、、以及x轴所围成的平面***形的面积。已知所围***形是一个梯形,应用梯形的面积公式容易得到其面积的真实值是再用上面的方法:通过“分割、近似、求和、取极限”几个步骤(教师与学生共同完成).
这与我们用梯形的面积公式计算出来的精确结果是一致的。该实例也验证了这种方法的可靠性和科学性。
上面三个案例,它们都是通过“分割,近似、求和、取极限”这种思想化归为一种特定的和式极限问题。将其一般化,抽象化即得到“定积分”的定义.
这样以案例引入,使概念开始尽可能不以严格“定义”的形式出现,而是结合自然的叙述,辅以各种背景材料,顺势引入,减少数学形式的抽象感,激发学生探索知识的兴趣。类似地还有极限的问题、导数概念等也可以采用以上的方法实施案例法教学。
3.数学知识的应用是高职数学教学的最终目的,它具有较强的综合性,解决过程也较为复杂。案例教学的实施,可以培养学生综合运用各种知识和灵活处理问题的技巧,学生在教室内就能接触并学习到大量的社会实际问题,实现从理论到实践的转化。
如模型最优化问题,边际分析、弹性分析问题,投入产出数学模型分析问题,人口增长模型及求解问题,变力作功及液体压力问题,转动惯量问题,流量问题等等。在高等数学的教材上有很多类似的案例,我们要精选或设计一些有专业背景的、综合性较强的案例交给学生分析,增强学生的应用意识,掌握应用的方法。应用案例教学法力求使学生在较为系统的掌握高等数学概念、思想、和方法的同时,学会用数学思维去思考问题,为他们今后的工作和学习奠定必要的基础,提高学生运用数学知识解决实际问题的能力。
案例是从实际问题中提炼出来的,涉及生活和学生所学专业的各个方面,一个好的案例可以成为数学知识的载体,它将数学的思想和方法融人其中,能使数学的“有用性”更鲜明地体现出来。实践探索证明,案例教学的确是教学的一种好的方式,是高职数学教学改革的一个发展趋势,其良好的教学效果已经是不争的事实。
在实施案例法教学的实践中我们有以下几点体会:
⑴案例法教学是一种动态的开放式的教学方式,案例教学的课堂上教师与学生的位置发生转移,教师在课堂上只是参与引导,教学应以学生为中心。整个教学过程必须有学生参与,力求做到“概念启发学生去总结、规律引导学生去探索、问题组织学生去研究”。
⑵案例法教学与传统的举例法教学有根本的区别,举例教学法针对教学内容某一知识点,是对数学概念的说明、对有关理论的诠释、对数学方法的示范,是教师单方面的教学行为。运用的是先理论后实践的认知方法 。而案例教学法是根据教学目的和内容的需要,通过教师的精心策划和引导,运用典型案例使学生置身于实践环境中,?以达到高层次认知的一种启发式教学方法。运用的是“从实践中来,上升到理论然后再回到实践中去”的认知方法。
⑶案例教学需要师生双边互动,一般耗时较多。如果授课内容较多而课时受限,就会影响案例教学的效果。建议在讲授重点内容时,精选案例,精心策划组织实施案例法教学。如果不考虑学科的特点过分强调案例教学,就会流于形式,无异于一般举例,这既不现实也不科学。
⑷数学知识的广泛应用性导致了它的高度抽象性,这就给案例的选择与设计带来一定的困难,致使案例教学在高职数学教学中的运用仍然存在着局限性。案例法在高职数学教学中的应用还处于探索阶段,案例资源还很少。我们在教学改革试验中尝试编制、遴选一些教学案例,但编制的许多数学案例仍然处于浅层次,低水平,况且是凌乱的几个点,不能贯穿成一条线,很难在数学案例教学中全面展开应用。希望从事高职数学教学的同仁和专家们,共同研究探索,资源共享,使得数学教学在高职应用型人才培养中发挥更大的作用。
[参考文献]
[1]***高等教育司 高职高专院校人才培养工作水平评估[M] 北京:人民邮电出版社 2004。