预应力技术论文第1篇
关键词:预应力结构设计
一、我国预应力砼技术发展历史回顾
(一)房屋建筑中的预应力砼技术发展历史
五十年代初,大量工业厂房和民用建筑需要兴建,而结构材料,特别是型钢和木材奇缺,由于难以解决厂房钢结构屋盖与钢吊车梁的型钢用料,迫切需要改用预应力混凝土来代替。按照预应力经典理论,生产预应力混凝土必须要用高强钢材(钢丝和钢筋)和高强混凝土,要用专门的张拉千斤顶、锚夹具及其配套的专用机械与零部件,而在我国当年除书本知识外,真是一穷二白,一无所有。要从国外进口,既缺外汇,又受帝国主义封锁,而苏联当时也刚刚起步,在人力物力上无力对我援助。在这一艰难时刻,原建筑工程部建筑科学技术研究所(中国建筑科学研究院前身)接受了国家计委的任务,沿着自力更生、土法上马、走不同于国外的具有中国特色的低强钢材预应力的发展道路,开始了预应力混凝土的研究。
从五十年代初至七十年代末,我国房屋结构中开发研制了一整套预制预应力砼构件技术,如屋面梁、屋架、吊车梁、大型屋面板、空心楼板等,其中预应力空心板年产量达一千万立方米以上。这一时期的预应力技术特点是采用中、低强预应力钢材,采用中国特色的预应力砼张拉锚固工艺技术。
从八十年代初至九十年代末,房屋建筑中预应力砼技术得到巨大发展,其显著特点是采用高强预应力砼钢材及相应工艺技术,对整体结构施加预应力,技术水平接近发达国家先进水平。二十年间建设了一大批预应力砼工程,其中有代表性的工程有63层预应力砼楼面的广东国际大厦;214米高的青岛中银大厦;单体预应力砼面积最大的首都国际机场新航站楼等。
(二)桥梁结构中的预应力砼发展历史
1955年,铁路部门研制成功我国第一片跨度12米的预应力混凝土铁路桥梁,1956年建成28孔24米跨的新沂河大桥,从而开始了预应力混凝土技术在我国铁路上应用的篇章。四十多年来,经过铁路系统工程技术人员的辛勤努力,预应力砼技术不断扩大,技术水平不断提高,制造架设跨度32米以下桥梁三万多孔,桥梁跨度不断突破,大跨径桥梁不断涌现,其中有代表性的工程有主跨为168米的攀枝花金沙江铁路连续钢构桥,顶推法施工的跨度80米连续箱梁桥杭州钱塘江二桥,此外在南昆铁路线上新建了一大批各种类型的铁路桥梁。
1957年,公路部门在北京周口店建造第一座预应力混凝土公路试验桥,为单跨20米简支T梁桥。1959年在兰州建成七里河黄河桥,为7孔主跨37.5米悬臂梁桥。后又建成新城黄河桥,桥型为5孔33米T型简支梁和孔66米系杆拱桥,奠定了我国建造预应力混凝土桥的基础。
随着我国交通运输的蓬勃发展,四十多年来,公路上建造了大量预应力混凝土桥,尤以大跨径桥梁居多数。如我国已建成主跨400以上斜拉桥七座,连续钢构桥继黄石大桥250米主跨后,虎门大桥达270米,主跨为世界之冠,这些桥型和其它桥型无论在跨度还是在施工方法上都已接近发达国家的先进水平。
城市立交桥中的预应力砼技术主要是七十年代开始起步的,目前仅北京修建的立交桥就已达200座,其中最早的立交桥是1974年建成的复兴门桥,采用先简支后连续方法施工;层次最多最高的是天宁寺立交桥;规模最大的是首都机场高速路上的四元桥。
(三)特种工程中的预应力砼技术发展现状
预应力砼技术在我国各种工程结构领域中均得到广泛应用,其中主要有水利工程中的边坡加固,建筑物基坑开挖的支护等所采用的土层、岩层预应力锚杆技术,代表工程为云南漫湾水电站左岸岩质高边坡加固和北京京城大厦深基坑支护;有竖向超长预应力砼技术的应用,代表性工程有中央、天津、南京、上海等电视塔的预应力砼技术;有环形预应力砼技术的应用,代表性工程有阿尔及利亚球形水塔,秦山、大亚湾核电站安全壳,柴里煤矿煤仓,各种圆形及蛋形污水处理池,各种输、排水管道;有超重、超高物体提升预应力砼技术,代表性工程有北京西客站主站房大跨钢梁提升、上海歌剧院钢屋盖提升、虎门大桥钢箱梁节段提升等。
二、我国预应力砼发展过程中的主要成就
(一)预应力材料技术的突破
1、冷拉钢筋技术
五十年代中期,我国研制成功有中国特色的冷拉钢筋预应力砼成套技术,主要有钢筋冷拉工艺、设备、锚固技术及冷拉钢筋物理力学性能的研究,冷拉钢筋制作预应力砼构件的生产工艺,冷拉钢筋预应力砼构件性能研究及设计方法。
2、冷拔钢丝技术
六十年代前后,我国研制成功冷拔低碳钢丝预应力成套技术,生产预制预应力空心楼板,由于冷拔丝费用低廉、工艺简单,预应力空心楼板在全国得到广泛应用。
3、中强预应力筋技术
七十年代初期至八十年代中期,我国相继开发出热轧低合金预应力钢筋、热处理预应力钢筋和精轧螺纹预应力钢筋,进一步促进了我国预应力技术的发展。
4、高强预应力钢丝、钢绞线技术
八十年代以后,我国相继从国外引进了十多条低松弛、高强度预应力钢丝、钢绞线生产线,生产能力目前己达到年产量三十万吨,这一技术的引进极大地促进了我国预应力工程技术的发展。
(二)预应力砼工艺技术的突破
1、预应力砼张拉锚固技术的发展
六、七十年代,我国研究开发了多种中低强度预应力砼筋张拉锚固技术,主要有螺丝端杆锚固技术、高强钢丝敏头锚体系、JM锚体系、弗氏锚体系等。七十年代中期,编制出版了常用预应力砼锚夹具定型***册。
八十年代中后期,我国技术人员跟踪国际先进水平,成功地开发了预应力砼钢绞线群锚张拉锚固体系,较好地解决了预应力砼施工中的关键技术,特别是大吨位(200——10000kN级)预应力砼锚具及配套张拉设备,达到了国际先进水平,1988年该成果被《科技日报》评选为1987年度全国十大科技成就之一。
2、无粘结预应力砼成套技术
八十年代中期,我国开发研制成功的无粘结预应力砼筋涂包设备、单根钢绞线张拉锚固设备、无粘结预应力砼结构设计技术规程等配套技术,促进了我国建筑工程中现浇预应力砼结构的发展。近二十年来,无粘结预应力砼结构累计推广使用面积达到一千万平方米以上,出现了一大批有代表性的、达到国际先进水平的工程项目。
3、斜拉索产品成套技术
八十年代中期,我国开始兴建大跨度预应力砼斜拉桥,为解决工程需要,上海浦江缆索厂与多家科研设计单位配合,建成了我国最大的斜拉桥缆索成品生产线,使我国的斜拉桥技术达到世界领先水平。
(三)设计理论及标准规范的发展
早期的预应力混凝土结构设计理论是按全预应力方法设计,八十年代初期以后,发展了部分预应力砼设计理论,目前预应力砼工程相应的规程规范已基本配套。主要有材料方面的预应力混凝土用钢丝、钢绞线标准;无粘结预应力砼筋标准;专用油脂标准;预应力砼筋用锚具、夹具、连接器产品标准及应用技术规程;各种预应力砼设备及产品标准;各种结构设计及施工规范。
(四)工程应用取得重大突破
房屋结构方面,63层的广东国际大厦采用了无粘结预应力砼楼盖技术;珠海机场候机楼和首都国际机场新航站楼采用了大面积无粘结预应力砼技术;首都国际机场停车楼采用了双向大柱网、大面积超长度有粘结预应力砼技术。
桥梁结构方面,上海杨浦大桥(跨度602米)等七座跨度400米以上的斜拉桥,代表我国斜拉桥技术已进入世界领先水平;连续钢构桥继黄石大桥250米主跨后,虎门大桥达270米主跨,为世界之冠;主跨168米的攀枝花金沙江桥和钱塘江二桥等铁路桥表明我国的铁路桥预应力砼技术已达到世界先进水平。
特种工程结构方面,秦山、大亚湾核电站安全壳,上海、北京电视塔,阿尔及利亚预应力混凝土球形水塔等一批高难度、高水平的特种结构预应力砼技术,表明我国预应力混凝土技术应用范围极为广泛、技术水平十分先进。
三、我国预应力砼技术发展展望
(一)新材料技术开发应用
预应力砼材料技术的发展从来都是预应力砼技术***的先驱,预应力砼筋除了目前使用的高强度钢材外,未来新型预应力砼筋应是强度高、自重轻、弹性模量大的聚碳纤维、玻璃纤维和聚醋纤维类非金属预应力砼筋。
(二)预应力砼技术在我国房屋建筑中将扮演重要角色
1、预应力混凝土在多层大跨结构中的发展方向
建筑业是我国国民经济重要支柱产业之一,旺盛的建筑需求,日新月异的生产工艺变革以及人们对物质文化生活需求的迅速提高,使建筑结构正面临新的挑战。近代建筑结构正在向大柱网、大开间、大跨度、多功能方向发展,人们总想在有限的建筑面积和空间内获得最好的使用功能和最佳的投资回报。预应力混凝土正以其跨度大、自重轻、节约材料、节省层高、改善功能等突出优点,迎合了近代建筑结构的发展趋向。经验证明,8~18m柱网(或跨度)的房屋正处于预应力混凝土建筑结构经济跨度范围内,对于大多数多层工业厂房,各类公共建筑如文化娱乐建筑、体育建筑、医疗建筑、商业建筑、办公建筑、航站建筑等,预应力混凝土结构常常是最佳的选择,它不仅有良好的技术和经济指标,而且能明显加快施工速度。建设部、科技部均将其列入“九五”及2010年发展纲要中的新技术推广项目。
2、高层建筑结构中预应力混凝土技术发展方向
近年来,预应力混凝土在高层建筑中的应用有很大发展,尤其是无粘结预应力混凝土平板和预应力砼扁梁用于高层建筑的楼盖,具有降低层高,简化模板,加快施工等明显效果,受到建设单位、设计和施工单位的普遍欢迎。预应力混凝土除用于楼盖外,有时还用来解决大跨度、大空间部位柱网转换时的转换梁、转换桁架,以及复杂柱网情况下的转换板。此外8~l8m跨度的预应力混凝土空心板,外墙用的装饰保温复合预应力混凝土墙板在高层建筑中的应用前景也很广阔。目前,高层建筑的外墙材料大都是红砖、小型砌块、实心混凝土或玻璃幕墙等,墙体材料的改革势在必行。
3、预制现浇相结合的装配整体式结构将加速发展
先张法预制预应力混凝土构件具有工厂化规模生产的各种优点,如质量控制水平高,构件耐久性好,模板周转率高,损耗小;与现场浇注的后张法预应力混凝土相比,省去了留管灌浆工序或无粘结束的注油挤塑工序,省去了管道费用、涂包费用和锚具费用。在道路及运输吊装条件较好,运距不太大(200公里以内)的情况下,预制构件常常有良好的技术经济指标。先进工业化国家中,预制先张预应力混凝土的比例很高,美国占70%~80%,法国、德国约占60%。现代的预制工业,是一项极具发展潜力的工业。现代化预制厂的主要生产过程均由计算机控制,高素质的技术工人和高效率施工机械与管理模式保证了产品的高质量,现代预制工业已摆脱了构件品种、规格单一,建筑与结构功能脱节的旧模式。很多工业发达国家的预制构件已能将建筑装饰的复杂、多样性以及保温、隔热、水电管线等多方面的功能,与预制混凝土构件结合起来,满足用户各种要求,又不失工业化规模生产的高效率。我国目前在这方面的差距很大,国内房屋建筑中最大量的预制构件仍是6m跨以下的空心楼板,工业建筑中的屋架、吊车梁、屋面板等。随着大柱网、大开间多层建筑和高层建筑迅猛发展,长跨预应力砼空心板、T形板、大型预应力砼墙板等必将逐步兴起,预制梁板现浇柱,或预制梁、板、柱与现浇节点相结合的各种装配整体式建筑结构体系预期会迅速发展,这种结构体系可以把预制与现浇二者的优点结合起来,避免纯装配式建筑对产品尺寸的高精度要求,结构整体性差和节点耗钢量大等缺点,又避免了现浇结构现场湿作业工程量大,受制于现场施工及气候条件,耗用大量模板、支撑等缺点。在材料消耗上,预制也有显著优点,以8~12m跨度的预应力长跨空心板为例,与无粘结预应力砼现浇平板相比,一般可节约混凝土30%~40%,节约钢材50%~60%,免去涂包和锚具费用,减轻楼面结构自重10%~15%,节省模板、支撑等,经济效益十分显著。
(三)其他结构领域的发展趋势
桥梁结构领域中,预应力技术既是一种结构手段,又是与施工方法结合形成一整套以节段式施工为主体的预应力施工工法或专利,主要有预应力悬臂分段施工技术、分段顶推施工技术、移动模架逐孔施工技术、块体节段拼装技术、大节段预制吊装技术等。这些施工技术与预应力技术是紧密相关的。现有桥梁的改造、加固技术亦是研究开发方向。
预应力技术的其它应用也体现了一种施工方法或专利技术,如预应力锚杆技术、重物提升技术、滑模顶推技术等,预应力技术的合理应用可创造一种新型施工方法或专利技术,这亦是它的发展趋势。
(四)设计理论将有重大进展,预应力混凝土结构的可靠性、耐久性和经济性更为协调一致
我国当前的预应力混凝土房屋建筑设计水平相对还比较低,急待完善与提高,主要表现在:结合预应力混凝土特点对结构的整体布局,概念设计、方案对比、综合技术经济效益的分析研究薄弱,设计理论上过分强调了裂缝对耐久性的危害,对某些预应力砼结构的抗裂要求过严,造成用钢量的显著增加,而对影响耐久性的其它更重要因素如保护层厚度,以及灌浆质量控制,无粘结的全长密封,尤其是锚具封端的严格要求则重视不够。结构分析方面,则常常把普通钢筋混凝土结构的设计准则不适当地套用到预应力混凝土高层建筑结构,例如剪力墙框架结构中,由预应力平板与柱构成的等代框架,以及由预应力扁梁、柱构成的框架,由于预应力配筋的方向性以及耗能特点,通常不宜考虑承受过大的地震内力,对这类结构的设计准则应有所区别,但目前有关的规范还都未涉及,有待补充与完善。随着我国预应力混凝土设计队伍的壮大和设计水平的提高,相信在不久的将来,我们将会在一些重大设计理论问题上取得共识,实现可靠性、耐久性和经济性的协调一致。
(五)预应力工艺将进—步完善,专用产品质量提高
尽管我国已能大批量生产高强钢材、锚具和各类预应力混凝土用专用机具,但就其质量的稳定性、耐用性及配套性以及预应力工艺水平而言,与国际先进水平尚有不少差距。预应力混凝土由于其钢材长期处于高应力状态和材料对机械操作或腐蚀的高度敏感,更值得引起我们对产品质量和施工工艺问题的关注。英国公路局于1992年9月曾下令暂停在新的桥梁工程中使用后张灌浆预应力混凝土桥,曾引起国际工程界的巨大震动,直到1996年新标准出台后才予以恢复。国际上对后张灌无粘结预应力混凝土的耐久性以及与保证质量相关的工艺技术均给予高度重视。我国应加强与国际学术界、工程界的交往,广泛吸取他人的有益经验。英国新标准预留管道采用不导电、抗腐蚀且耐久的高密度聚乙烯或聚丙烯塑料波纹管替代金属波纹管,以便提供预应力束的多道空气和水的绝缘屏障,并对灌浆更高要求。国外对无粘结筋的防腐蚀要求、全封闭要求和构造细节、质量标准也都很严格,这方面我国还有许多工作要做,质量有待提高。锚具的生产许可证制度也势在必行。
预应力技术论文第2篇
1.1合理选择钢绞线在进行桥梁建设施工之前,首要任务就是对建筑施工工程等一系列相关信息进行全面、充分、详细的了解,譬如:项目资金、结构、柱网尺寸、面积等内容。第二步就是对桥梁工程信息进行整体的分析,并根据工程设计中所规划的预应力方案选择钢绞线,具体来说钢绞线必须满足美观、方便、经济、实用,同时能够突出桥梁特点等一系列要求。就现阶段桥梁施工中预应力施工技术的应用情况来看,由于低松弛钢绞线在实用、经济等方面具有突出的优势,因而在实际施工中被广泛运用。另一方面,在进行钢绞线的选择过程中,还需要充分考虑到桥梁建筑工程的几何参数、松弛率、伸长率等各方面性能,以及规格、延伸率、尺寸等一系列标准情况。
1.2合理选择预应力锚具预应力锚具的选择,也是在应用预应力技术进行桥梁建设施工中所需要慎重考虑的因素。在进行预应力锚具的选择时,需要充分考虑摩阻锚具以及机械锚具。由于这两种锚具具有不同的使用方法,且相比较而言摩阻锚具的操作过程更加简便、使用效率更高。然而摩阻锚具也存在一定的缺陷,既是在链接方面较为繁琐,并且损失较大等等。因此,无论选择哪种预应力锚具进行施工,都应该根据工程的实际情况有针对性的选择。
1.3准确分析预应力效应在应用预应力施工技术过程中,无论工程规模大小,都应在准确掌握和详细分析其预应力效应的前提条件下,进行工程施工。譬如:可以首先对预应力不同方面的信息和数据进行假设布局,根据假设布局的大致框架设定出分布***,再对该预应力进行综合分析,需要注意的是,在进行假设分析的过程中要充分考虑到可能会出现的问题,并针对不同问题设定一系列解决预案,同时还需要对该解决预案进行实际可行性的综合分析,这样一来就能够有效避免损失。
1.4路桥钢筋混凝土结构的施工现阶段大部分建筑施工中都不可避免会出现混凝土的裂缝问题,该问题在路桥施工中尤为突出。然而,凭借预应力施工技术的各项优势,能够有效避免路桥钢筋混凝土施工过程中的裂缝问题,通过研究多数路桥施工案例发现,预应力技术的应用对于混凝土的裂缝问题有着较为显著的效果。需要说明的是,在实施预应力施工技术之前,要事先对受拉区域进行一定的预设施压,并且对其中的预应力进行估计,最后在应用到实际的施工中去。
2案例分析
针对预应力施工技术在市***桥梁工程中的应用情况,本文以某市桥梁施工建筑为例,该建筑的总体面积是16100m2,其中柱网尺寸是8×27m,选用现浇混凝土为工程结构,当中的混凝土强度为C45。选用高强度低松弛的钢绞线为预应力筋,采用连续曲线梁布置,设计的强度标准值分别为:d=15.24mm,As=140mm2,fpu=1860N/mm2。选取混凝土灌浆机、YBDC240千斤顶、OVM型锚具、高压油泵、金属波纹管。第一,浇捣预应力大梁混凝土,采用石子粒径在0.5cm~3cm范围内的砂子为主要混凝土材料,选择430Kg/m3的水泥用量,同时在水泥中掺入适量泵送剂和12%的U型膨胀剂,另外选用泵送混凝土施工。需要注意的是,在施工过程中要把握好下料时的厚度问题,进行到混凝土振捣环节时需要严格控制相关实施步骤及技巧,振捣棒不可接触到波纹管,全程要保证振捣密实,不能形成空鼓现象。最后在进行浇灌环节时,需要设立专项值班,并对已经完成混凝土浇灌工序的钢绞线,进行一定规律的来回抽动直到大梁混凝土凝固成形。第二,针对预应力钢绞线的锚固及张拉工作。YL-2、YL-1实行梁两端的张拉,YL-3实行梁一端固定一端张拉,固定的一端即为钢绞线在进行挤压之后的锚垫板。
3结束语
预应力技术论文第3篇
钢筋选用,其中公称直径32mm、28mm、25mm、20mm、16mm、12mm为定直长钢筋,钢材牌号为HRB400。定长直钢筋在堆放处用砖砌筑24×30mm垫枕,间距1.5m。钢筋是确保高墩预应力盖梁强度的重要材料,在其选择过程中,应本着牌号、型号、规格都满足要求,保证高墩预应力盖梁施工质量达标。砂石料砂子选用天然河砂,细度模数为2.3~3.0,材料规格为中砂,石料选用碎石,规格为5~20。砂子是提高混凝土凝结质量和整体强度的重要成分,因此砂石料的选择也应确保型号和规格满足实际需要,达到提高高墩预应力盖梁施工质量的目的。
2高墩预应力盖梁施工的主要过程
高墩预应力盖梁的施工过程相对复杂,以下选取主要工序进行阐述,确保全面展示高墩预应力盖梁施工过程。
2.1搭设脚手架脚手架采用φ48×3.5碗扣式脚手架,材质Q235,纵横向立杆间距0.6m,每隔1.2m步距设置横向水平杆,距地面20处布置纵横向扫地杆,且整体斜拉和水平剪力撑,在立柱周围设置间距2m的钢管抱箍。搭设脚手架主要是为了便于施工作业,在脚手架的搭设过程中,应确保脚手架的紧固程度和承载力能够满足实际要求。所以,脚手架的搭设重点在于结构和材料的选择。
2.2铺设横梁和底模横梁和底模的铺设主要是为砼的浇筑提供模子,在砼浇筑过程中,按照模板的结构将砼浇筑在其中。
2.3砼的浇筑砼在搅拌之后,需要浇筑到预定的模板中,砼的浇筑过程需要注意浇筑环境温度和浇筑速度的控制。
3高墩预应力盖梁施工技术的主要优点
结合高墩预应力盖梁施工技术的实际应用,高墩预应力盖梁施工技术的优点主要表现在以下几个方面。
3.1高墩预应力盖梁施工技术可以提高桥梁主体的承载力
通过采用高墩预应力盖梁施工技术,桥梁主体的承载力得到了有效提高,对提高桥梁施工质量,促进桥梁施工发展具有重要的促进作用。所以,高墩预应力盖梁施工技术是桥梁施工中的重要技术之一,对提高桥梁承载力具有重要作用,为此,我们应有正确认识。
3.2高墩预应力盖梁施工技术可以满足桥梁施工质量要求
桥梁施工对质量要求较为严格,要想保证桥梁施工满足质量要求,高墩预应力盖梁施工技术是重要的手段。基于这一认识,在高墩预应力盖梁施工技术的应用中,对满足桥梁施工质量起到了重要作用。从当前桥梁施工来看,高墩预应力盖梁施工技术有效满足了桥梁施工质量要求。
3.3高墩预应力盖梁施工技术可以改善桥梁主体结构
桥梁结构是决定桥梁整体质量的关键。通过采用高墩预应力盖梁施工技术,桥梁的主体结构得到了有效改善,桥梁的整体质量得到了全面提高,对降低桥梁施工难度起到了积极的促进作用。
4结论
预应力技术论文第4篇
关键词:预应力现场施工
随着人们消费观念的改变,对住房和工作环境及消费水平的要求也越来越高,住宅要求有较好的内景,办公室要求有开阔舒畅的空间,建筑要追求较大的净高……预应力结构的出现,轻松的实现了这些要求。
预应力结构的形式也是多样丰富的,常用的形式有:无梁平板结构、有梁大板框架(或剪力墙)结构、转换层结构、门架结构和吊车梁以及特殊结构如水池、筒仓、大悬挑结构等。
(一)、预应力平板结构
传统的普通钢筋混凝土梁板结构体系,需在柱间及隔墙下设置框架梁和次梁,这必然导致室内明梁纵横交错,降低了楼层的有效高度,影响了室内美观和使用功能,装修也较难处理;由于室内明梁的存在,隔墙布置的任意性受到限制,室内功能的重新调整比较困难,而一栋建筑物在其50年甚至70年使用期内都不需对空间重新分隔和变换使用功能是很难想象的,特别是一般的商场建筑及办公楼建筑。若设计中楼盖体系采用普通钢筋混凝土平板结构或预应力平板结构,以上问题则迎刃而解;工程若采用普通钢筋混凝土无梁平板结构,由于内隔墙较多,附加荷载较大,要使普通钢筋混凝土平板的裂缝控制等级及挠度满足规范要求,计算所需板厚较厚,同时普通钢筋用量也较大,不经济。因此,为了提高整个楼盖的抗裂性能,减薄板厚,减轻结构自重,提高其使用功能,采用近年来在大量工程中得以广泛应用的现代高效预应力混凝土结构技术,将整个楼盖设计为后张部分预应力混凝土无梁平板结构是一个良好的选择。这种预应力无梁平板,除在楼板周边保留必要的边梁和在局部少数有隔墙的地方及洞口边缘保留梁之外,室内明梁全部取消,仅在必要的地方设暗梁以改善楼板的受力性能,每单元整个室内顶板为一整块的平面。
这种结构具有各种预应力结构的许多共性,其优点主要有:
(1)有利于减少地下室埋深及基坑开挖深度
对于有地下室的大型建筑或高层建筑,常常把地下室作为车库或商场。底板、顶板均可做成预应力平板;局部配电房,发电机房等需层高较高者,可局部下挖,使之达到设备高度要求;这样,在地下室中,则降低了层高,减少了水压力,减少了底板支模工序及基坑开挖深度,减少了外墙砼用量,从而降低造价。若是把上部结构也做成预应力结构,或选平板结构或选有梁大板结构,均能扩大柱距,使柱子和基础数量减少,也增加了室内的净面积。车库可以比上部结构做普通结构多出许多个车位出来,商场则可以摆放更多的货品栏。
(2)利于增加建筑物楼层的净空高度或者减少层高
对于6~9m跨度的楼盖体系若采用普通钢筋混凝土梁—板结构,梁板需要占去700~1000mm的净空,若采用预应力楼板后,室内明梁取消,板厚为180~200mm(托板部分总高度300~350mm),这样在净空部变的情况下,每层可以减小500mm以上的层高。
(3)利于改善结构的使用功能
现在业主根据自已的爱好,经营商品的组成变化,需要对商场及办公楼进行重新分隔的现象比较普遍,甚至在不同时期因业主的变化,都会有不同的间隔要求。预应力楼板对用途的改变极容易适应,在任意位置均可以设置隔墙,方案可以是多种多样,可给用户最大的自由度,使房屋使用功能及档次得到很大的提高,是房屋销售的一大卖点。另外预应力楼板取消了室内明梁,避免了由于管线及通风管道的铺设使层高大大降低的问题,同时也为管道的安装提供较大的方便,预应力平板的分隔墙可以任意间隔,更是解决了各层各户布置均不同带来的普通梁—板结构设计及使用之间的矛盾,这点也对回迁房的分割带来极大方便。
(4)具有优越的抗裂性,减少钢筋用量,降低结构的造价。
在预应力混凝土结构种预应力筋可产生一个向上等效荷载,同时在板中产生一个轴向压力,使平板刚度提高,挠度大大减少,抗裂性能也大为提高。采用预应力混凝土无梁平板结构可以降低结构的造价是因为,第一普通钢筋用量减少,因为1)预应力筋强度高(是普通钢筋强度的3-4倍),且一条预应力筋在跨中作底筋而在支座又弯上做面筋,使预应力筋的使用效率大大提高;2)有梁板往往以极值代替平均值进行抗弯设计,无梁板直接以平均值进行抗弯设计;3)无梁板充分利用了混凝土的抗剪能力,较有梁结构箍筋用量省很多;4)预应力结构不需要为控制裂缝或提高刚度增加普通配筋,裂缝控制要求越高,预应力结构优势越大(如地下室底板、有填土的顶板等);5)规范规定的预应力板的构造配筋率比普通板低;6)有消防车这种特殊可变荷载活动的区域(如有些地下室顶板)无梁结构的纵筋箍筋都比有梁结构省。第二对于车库、商场、仓库、有吊顶的办公楼,可以在柱头处加托板,使结构的断面与弯矩***较充分地协调,大大减少预应力筋用量。第三模板较普通梁板结构少25-35%,而且预算定额直接费较低。第四无梁板混凝土可用较大粒径碎石,定额价一般较低。大量的工程实践及对比分析表明,结构选型及设计合理的预应力无梁楼板结构已经不断地改写和涤荡者无梁板结构比有梁板结构造价高的传统观念(这种观念在一般的教科书中都有表述,因此根深蒂固)。
(5)施加预应力后楼板的模板就可以拆除,施工方便,速度快
采用预应力混凝土平板结构,施工进度可以加快,这主要是因为:
a.预应力混凝土平板结构取消了许多梁,模板用量明显减少;而且模板安装简单方便,节省时间。
b.采用预应力混凝土平板结构后,楼面结构的普通钢筋用量将减少,而且减少的大多是绑扎费时费力的梁钢筋,平板钢筋绑扎快捷方便,预应力筋与普通钢筋的绑扎可以交叉进行,节省时间。
c.当混凝土强度达到设计强度的75%时即可进行预应力筋的张拉,张拉过程中可以照常进行上一层楼面的施工。张拉完成后,即可拆除模板,而预应力张拉不占施工工期,节省了时间。大量工程实例表明,并不会因为采用了预应力而增加工期,相反,预应力平板的施工速度要快于一般的梁板体系,这与常规想象有很大的不同。
由于以上预应力无梁结构施工省人力、省模板及铺材、模板周转加快、施工周期缩短(从而人工费用减少)的特点,有过体验的土建施工单位,更乐于这种结构的施工。
(二)、有梁大板框架(或剪力墙)结构
有梁大板结构是柱子于柱子之间布明梁,大板上布置隔墙的结构体系。这种结构于平板结构有很多相似之处,柱距比较大,由于省去了次梁,避免了室内错综复杂的次梁,内景好,增加净空,抗裂好,省材料省模板和拆模人工,施工快速等优点。若这种大板配合预应力宽扁梁使用,则也能很大限度的减低层高或提升层净高,如9米跨的预应力宽扁梁可以做到450mm高,比做普通预应力梁650mm少200mm高,比普通混凝土梁800mm少350mm。
由于结构种还带有明梁,结构仍然属于框架或剪力墙结构,可以用于平板结构所不太适宜的高层或抗震设防烈度比较大的地方。
有梁大板结构适合用于住宅和办公楼,尤其是住宅,不设次梁,既避免了室内难看的次梁景观,也利于住户自行隔断房间以实现不同的功能,即使更换了新住户,改造房子时仍然可以再次自行布置房间。长沙市高12~16层的亚华住宅小区和16层的湘名园住宅小区都是采用这种结构形式的,住宅的使用功能得到了住户的一致好评。当然这种结构体系仍然适合用于商场等公共建筑。
(三)转换层结构
最近我国高层建筑发展迅速,且多为多功能综合性建筑,需要大柱网、大空间的公共设施在下部,从受力的角度讲这是不合理的,解决这种矛盾的最常用方式就是设置结构转换层。随着预应力技术的逐渐成熟,预应力材料及施工费不断下降,即使用材料等强代换的概念从经济上来比较预应力混凝土结构与钢筋混凝土结构,在许多情况下后者并不比前者经济。因此我国高层建筑转换层结构中采用预应力技术的情况越来越多,大多数转换层结构形式有成功地采用预应力技术的例子:如位于8度抗震设防区高64.2m的北京市公安局刑科楼就是做了跨越2~4层高达4800mm的预应力转换大梁;宁波浙海大厦,地上52层,地下2层,在6层处设置了2000mm的预应力厚板和3500x3200mm的暗梁作为该超高层建筑的转换层;上海乾鸿苑大厦由九座塔楼组成,塔楼在60米左右不等,塔楼扭转48度,上下层错位,采用厚970mm长约140m宽为40m~70m不等的不规则梯形预应力厚板作为该多塔高层的转换层。
采用预应力技术带来许多结构和施工上的优点,如减少截面尺寸、控制裂缝和挠度,控制施工阶段的裂缝及减轻支撑负担等。只要采用预应力度适当,构造处理得当,预应力结构的抗震是可以得到保证的。且由于减小了转换构件的尺寸,对抗震也是有利的。
(四)、特种结构及其他
随着公共事业的发展,各种特殊功能的构筑物不断出现,有些特殊构筑物的使用功能及受力性能常常需要预应力技术才能实现,预应力技术在这些特殊功能构筑物中发挥了重要的作用。
(1)、大悬挑结构
体育建筑在各大中城市兴起,体育建筑的形式多样,风格各异,使预应力技术的应用丰富多彩。如南京为承办第三届城运会兴建的四座体育馆,关键结构部位都是采用预应力技术;江苏省的仪征化纤体育场、无锡市体育场、南京师范学院体育场的观众席都采用了大悬挑的预应力混凝土雨蓬。随着钢结构的发展,许多雨蓬采用钢结构,可以获得更大跨度,但是造价和维修费用都比较高,所以在适当跨度内预应力混凝土结构还是有很大的优势。
(2)储罐与筒仓
一般地,储罐与筒仓对抗裂要求比较高,预应力技术广泛用于这种结构主要利用预应力主动轴力来抵抗混凝土拉应力来提高抗裂性能;尤其是圆筒结构,环壁的混凝土只受环向轴力作用,正是预应力最适合的结构形式。绕丝后张预应力混凝土水池在国内应用了几十年,主要采用预压应力来抵消由于水对筒壁产生环向拉应力。这样用高强钢材提高了抗裂性能就可以在同等抗裂条件下减小截面尺寸,带来可观的经济效益。
(3)其他
各种用途的塔式结构如电视塔、通信塔、灯塔及各种水塔中,预应力技术同样得到了广泛应用。还有预应力技术基础也不少见,主要形式是预应力条基、箱基和筏基。此外,预应力钢结构,叠合结构采用预应力的技术也在不断成熟中,工程实例也越来越多。
(五)结语
预应力技术经过了几十年的工程实践和不断研究,已经是比较成熟的一项工程技术,在今后的发展中,还将日臻完善。工程实践告诉我们,预应力技术以种种优势,在某些建设领域有着强大的生命力和竞争力,甚至在其还未完全占领的领域仍然具有强大的发展力。
参考文献:
预应力技术论文第5篇
关键词:预应力新技术连续梁桥试验研究应用效益
1引言
预应力砼结构较普通钢筋筋结构不仅用料省,且使用性能好,但其施瓜工艺复杂,技术要求甚高,在一定程度上阻碍了预应力的进一步发展和推广应用。为简化预应力砼的施工工艺人们曾进行多方面的努力,预弯复合梁[1]即是其中之一,该梁既具有预应力梁良好的使用性能,又省去了常规预应力所必须的留孔、穿索、张拉、锚固、压浆、封锚等一整套工序,施工工充得到简化,但其用钢量却急删增加,以致在大多数国家和地区难以推广应用。可见,现有的预应力砼结构左良好的使用性能、用料的经济性及施工的简易性三方面并未达到完美的统一,尚需我们做出不断的努力,为此周志详副教授提出预弯预应力钢筋砼(以下简记为PFRC)梁的设想,并在三跨连续梁桥上进行应用研究,以期求得一种更合理和经济的结构及预应力施工工艺。
2PFRC梁的工艺及原理
现以简支梁为例,说明PFRC梁的施工工艺及预应力原理:
(1)按钢筋砼梁方式制作,具有适当预拱度的梁体,与钢筋砼梁所不同的是PFRC梁受拉主筋宜采用冷拉粗钢筋,并需在梁的受拉边可能出现裂缝凶区域设置预留槽口该区段内的主筋净保护层厚度取为箍筋的直径。
(2)对许梁施加预定的竖向荷载p,此时,在预留槽口的顶端会出现裂缝。
(3)绑扎受拉边翼缘的构造钢筋(注意插入式马蹄箍筋应通过预留槽口插入先浇梁体内浇注该翼缘的砼)。
(4)待后浇受拉边翼缘砼达到强度后,卸除预加荷载P。
现依据容许应力法理论对梁在上述预加载和卸载过程中跨中截面应力的变化
分析如下。
对设有预留糟口的钢筋砼梁作预加载时的计算截面及应力分布,此时梁的受拉力已开裂(预留槽口的存在即人为地规定了裂缝出现的位置及间距),受拉区仅计入主筋的作用。若换算截面对其重心轴的惯性距为I01,则在预加荷载弯矩MY的作用下上缘砼的压应力σh1和受拉钢筋的应力σg1分别为:
σh1=MYX1/I01(压)
σg1=nMY(h-X1)/I01(拉)
式中n表示钢筋弹性模量与砼弹性模量之比,X1为上缘至中性轴的距离。
在后浇下翼缘砼到强度后,卸除预加荷载p相当于梁施加了反向的预加载p,因此跨中截面受到了负弯矩MY的作用,此时梁的下半部分后浇下罢缘砼将参与受力,其计算载面及应力分布,设换算截面对其重心轴的性矩这I02,则梁缘上下边缘砼的应力σh2、σh3和钢筋的应力σg2分别为:
h2=MYX2/I02(拉)
σh3=nMY(h-X2)/I02(压)
σg2=nMY(h0-X2)/I02(压)
式中X2为上缘到中性轴的距离。
梁截面的实际应力分布为单独考虑预加载和卸除预加载两种情况载面应力的迭加,帮梁的上、下边缘砼应力σhs和σhx及主筋应力σg分别为:
σhs=σh1-σh2=MY(X1/I01-X2/I02)(压)(1)
σhs=σh3=MY(h-X2)/I02(压)(2)
σg=σg1-σg2=nMY[(h0-X1)/I01-(h0-X2)/I02](拉)(3)
若梁在使用荷载作用下所受到的弯矩为M,则梁上、下边缘硷的应力分别为:
σhs=MY(X1/I01-X2/I02)+MX2/I02(4)
σhs=(MY-M)(h-X2)/I02(5)
由(5)式可见梁在不大于预0加荷载弯上MY,的作用下,其后浇下翼缘砼内不出现拉应,(暂不计砼收缩,徐变及钢筋松驰的影响),即该梁的下翼缘右以具有足够大的抗裂度,故梁,主筋得到可靠的保护,在使用荷载作用下梁截面的抗弯刚度因下翼缘砼参与工作而得到显著提高,其计算刚度与同截面的常规预应力砼梁相差元几,该梁的梁腹虽然尚存裂缝,但这些,缝并不穿过梁内受力钢筋(受拉主筋和箍筋)且不影响结构的受力状况,从钢筋砼的观点看,念些裂缝是允许存在的。
由此可见PFRC梁是通过在钢筋砼梁受载条件下二次浇注受拉边翼缘砼来代替常规预应力砼中的张拉钢盘,使后浇翼缘砼借助卸载时梁内主筋的弹性恢复获得所需要的预应力。为此,在先浇梁体的受拉边设看预留槽口是十分必要的,它具有如下凡个作用:①充当新、旧砼结合界面的剪力槽;②人为地控制荷载下裂缝出现的位置及间距,③便于后浇翼缘的插入式马蹄箍伸人先浇梁体内,进一步保证新、旧砼结合的整体性;④确保受控边翼缘范围内封无原发裂纹存在,使整个翼缘都受到应力的作用。
3试验研究简况
3.1试验梁的制作
第一批试验梁共5片,用于短期静载试验,其中4片为PFRC梁,余下的一片为与之比较,钢筋砼梁(一次浇成,不作预加载处理),编号为RCL10-00.0。在PFRC先浇粱体中,以高5cm,厚2-3cm的楔形木板形成预留槽口,在预加载条件下4片PF梁的纯弯段及其附近区域内每一个预留槽口的顶端都对应有一条裂缝(其宽度<0.04cm),在两相邻预留槽口之间未发现新的裂缝产生,表明预留槽口达到了人为控制裂缝出现的位置及间距的目的,对梁下缘砼表面进行打毛后邦扎受拉翼缘构造钢筋(纵筋和插入式马蹄箍箭),用高流动性普通水泥砼(坍度为10cm)灌注受拉翼缘砼,并对此砼加强养护、直到卸除预加载时均未发现后浇砼表面有收缩裂缝产生。
3.2试验方法
本次试验的目的在于考查琅梁通过预加载条件下二次浇注受校边翼缘砼的处理,是否能够达到推迟开裂和提高粱的抗弯刚度效果,为此开裂荷载和梁的变形成为试验观测的重要内容。同时考虑到工程实践中多数结构都承受循环荷载的作用,故首先对每梧梁进行三次静力循环加载试验,借以获取一些梁在多次重复荷载下的试验数据,之后即对梁继续加载至破坏。
3.3梁的开裂
5片试验梁的第一条裂缝均为弯曲裂缝。PCL10-0.0在第一静载的第2.5级荷载下即在跨中下缘位置产生第一条裂缝。其宽度为0.01mm,高度为3cm,其余各梁(PFRC梁)的下翼缘在前二次静力加载、卸载的过程中均未发现裂缝,第一条裂缝均在第三次加载下产生,其宽度为0.02-0.03mm,高度2-3cm,试验表明,PF梁下翼缘第一条裂缝出现的位置与先浇梁体预留槽口的位置并无必然的联系。不难得到PFRC梁的抗裂弯Mf为:
Mf=My+rR1Wox(6)
其中:My为预加载产生的弯矩;r为塑性影响系数;Wox为扣除梁腹已裂部分的换算截面对受控边缘的抵抗矩;R1为下缘硷的抗拉强度。试验表明,梁的实测抗裂变矩与按(6)式得到的计算相吻合,从而在理论和试验两方面都证实了:通过预加载条件下二次浇注受拉边翼缘砼的处理后的梁,可以推迟受控翼缘砼的开裂至希望程度。
3.4粱的挠度
PCL梁在第一次静力加载后的残余挠度数值因故未获得,在第二次静载后测得残余挠度为0.18cm(不包含第一次静载后残余挠度),据结构承受静力循环荷载的一般规律可以推知,其第—次静载后的残余挠度将大于0.18cm,该梁在第二次静载时各级荷载的挠度较第一次静载时对应的挠度值有大幅度的增加,第三次静载的挠度亦大于第一次挠度,说明该梁的弹性恢复能力较差,此为RC梁的一大缺点,而4根PF粱在第一次静载后的残余挠度均在0.10-0.08cm,第二次卸载至0后几乎未发现新的残余挠度产生。且三次静载下各级荷载对应的挠度无明显差异,表明PF梁在下翼缘开裂前具有较强的弹性恢复能力,即具有常规预应力砼梁的特点。
综上所述,PFRC不仅具有较强的弹性恢复能力,而且具有足够大的刚度,保持了常规预应力硷梁的优越性,且避免了常规预应力砼粱因预应力度过大而引起的一些矛盾。
3.5长期受载情况
在静载试验的同期,还做了2片梁的室外长期加载试验,梁的截面同静载试验梁,主筋为冷拔钢丝,所受荷载为该梁预计使用荷载的75%(相当于桥梁恒载),经长达—年的长期观测表明,梁的挠度和腹部裂缝宽度元明显变化,梁的下翼缘未发现裂缝。
4PFRC在连续梁桥中的应用
4.1桥梁概况
民生桥位于四川省名山县城中心,为跨越名山河连接两岸主街道的城市桥梁,桥宽20m,桥轴线与河床轴线的交角为45°,主梁全长61m,设计荷载为-20,挂-100,人群400km/m2。原设计上部结构为3跨20m跨径的后张预应力砼简支斜梁娇,桥梁横断面由12片T形梁构成,下部构造为重力式墩台。
4.2结构设计
经综合考虑用材的经济性,施工的简易性及良好的使用性,本桥更改为三跨连续斜粱桥,桥梁横断面由4片现浇砼T型梁构成,主梁间距380cm,高130cm。
设计中着意减小了主粱弯矩粱段的刚度,增大了负弯短梁的刚度,从而减小了正弯矩粱段的长度及弯矩峰值,增大了负弯矩粱段的长度及弯矩峰值,故在正弯矩梁段按普通钢筋砼粱设计,避免了在下翼缘进行二次浇注砼,在负弯矩梁段按PFRC粱设计,预应力钢筋采用冷拉Ⅳ级钢筋,预加载下需在主梁顶面进行的二次浇注砼可与桥面铺装同期进行,施工工序与普通钢筋砼相近,却节省了大量钢材并增加了桥梁的使用性能。
主梁内力分析采用桥粱专用程序计算,正弯矩梁段按普通钢筋砼梁(RC梁)设计,负弯矩梁按PFRC梁设计,其极限承载力满足规范的要求,梁在施工及使用阶段的应力验算满足《桥规》的要求,预加载阶段的计算截面为扣除受拉区砼面积的换算截面,卸除预加载及其以后的使用阶段的计算截面为扣除梁腹己裂部分砼面积(计人后浇砼面积)的换算截面。主梁斜截项按普通钢筋砼梁进行强度设计。
4.3施工要点
为减少旋工费用,避免大型起吊设备的使用,本桥主梁拟定为就地支架立模现浇砼,其主要步骤如下:
(1)支架立模浇注主梁及RC梁段的桥道板砼;
(2)待主梁砼达到14d龄期和80%的设计强度后拆除支架;
(3)安装人行道板及浇注RC梁段的桥面铺装;
(4)对桥进行预加载;
(5)用微膨胀砼浇注PFRC梁段的桥道板和桥面料装砼,要求灌满全部预留槽口,
(6)待砼达14d龄期后,卸除预加荷载,该桥于1995年12月18日建成通车。
5效益分析
目前国内外常用的预应力砼有两种,即常规预应力砼梁(简记为TPC;通过张拉纲筋使砼获得所需的预应力)和预弯复合梁(简记为PFRC;借助受载后的钢梁在卸载时的弹性恢复并获得砼所需的预应力)。
PFRC梁较TPC梁简化了施工工艺,省去了TPC所必须的留孔、穿索、锚固、灌浆、封锚等一系列复杂的工艺,且不用张拉机具,降低了施工技术要求,无需锚具及锚下垫板和局部加强钢筋,受拉主箭可根据强度要求在适当的位置切断,放可节省材料:PFRC中砼所获得的预应力与梁抵抗外荷载所需的预应力的分布及大小相吻合,其预加载方式与使用阶段梁受载情况一致,预加载过程即对梁进行一次质量检验,故受力合理,使用安全。
与PFSC相比PFRC用钢量显著减少,施工更为简便,适用性广。
在名山民生桥应用PFRC技术,与原设计常规预应力砼梁相比,节省XM157-7型钢绞线群锚240套,φ65波纹管2500m,省去了张拉设备,简化了施工工艺,全桥所需人工减少2953个工日,因采用连续梁桥减小了支座数量,使桥梁墩台圬工数量减少约670m3,总计使桥梁造价降低38万元,占全桥总造价的21.6%。连续梁桥方案在梁高不变的条件下增大了主孔跨径,利于排洪和与环境的协调,具有明显的社会效益。
6结论
(1)试验研究和理论分析表明:PFRC梁通过预加竖向荷载条件下后浇受拉力翼缘砼的工艺处理后、能够达提高梁的正截面抗裂度和抗弯刚度之目的,且较常规应力砼梁施工简便,受力合理,较预复合梁节省钢材,故PFRC技术是合理可行的。
预应力技术论文第6篇
1.1在受弯构件在施工过程中的应用在受弯构件的施工过程中,由于碳纤维的强度比较高,因此在实际的施工过程中,也是较为简单的。但正是因为这样的原因,使用碳纤维片对受弯构件进行加固的过程中的问题进行解决就已经成为了一种较为普遍的方法。但是在实际的使用过程中,由于在加固受弯构件之前混凝土就会已经有初始的压应变以及拉应变,因此混凝土的压应变一旦到达了极限的压应变,受弯构件就会到达极限的承载能力之上。
1.2在多跨连续梁施工过程中的应用在多跨连续梁的施工过程中也能够使用到预应力技术,这是因为在结构的层面上看,多跨连续梁分为正弯矩区以及负弯矩区两种施工的形式,在一般的情况下,存在支架的为负弯矩,跨中的为正弯矩。因此在多跨连续梁的施工过程中,往往抗剪承载能力以及抗弯承载能力是无法达到要求的,在此情况下就可以使用预应力技术来进行加固的处理。
1.3在加工的施工过程中的应用一般而言,在加固公路桥梁的过程中都是需要使用到预应力技术,这种技术往往能够进行补强构件,并且将结构性能进行增强,从而建公路桥梁的承载能力在较大的程度上进行提升,在这种方式下,就能够延长公路桥梁的使用寿命,也能够满足目前我国对于交通运输的各种要求。
2.如何在我国的公路桥梁施工过程中使用预应力技术
2.1选择预应力的锚具在使用预应力技术的过程中,首先需要将预应力的锚具进行相应的选择。在选择的过程中,主要是需要选择摩阻锚固以及机械锚固。对于机械锚固而言,时需要使用机械加工的方法,在预应力钥材的顶部形成一种和锚钉工作状态以及相应的条件相同的高强度的钢丝,或是使用一些高粗度的钢筋。这种器具的特点就是施工过程中连接十分方便,同时应力的损失比较小,在实际的使用过程中,如果没有灌浆之前,那么就需要使用重复的紧扣或是放松来对预应力进行相应的调整。但是对于摩阻锚具而言,主要是对楔形锚具的使用,并且能够将预应力钢材形成一种锚旋,由此可见,这种锚具具有巨大的适用范围以及种类,因此目前得到了较好的使用。但是不足的是,需要进行重复的张拉或是进行连接,同时也会具有较大的预应力的损失。
2.2对预应力钢绞线进行选择在对锚具进行选择后,可以对钢绞线进行选择。目前我国主要使用的预应力钢材主要包括了低松弛的钢绞线,普通的预应力钢绞线以及低松弛预应力的坝丝,冷拉预应力的钢丝以及矫直回火预应力的钢丝。在这些预应力的钢绞线中,低松弛钢绞线是一种最为应用广泛的预应力钢材,在使用的过程中往往具有施工简单、轻便美观以及施工简洁的特点,目前在我国的公路桥梁使用的过程中已经得到了十分广泛的应用。
2.3对预应力的体系进行设计在对预应力体系进行设计的过程中,往往是使用OVM以及XYM来对预应力体系进行设计的。在实际的设计过程中,体系的顶板纵向钢束往往是使用平竖弯曲来结合在仪器的一种空间性的空间的曲线,同时在腹板的顶部需要使用一种承托向上的集中锚固,并且需要和低板钢束应该和近齿板处的锚固尽可能地进行接近。在这样的一种布述下,主要有三点特点。在第一点上,能够将最大力臂的预应力进行了保证,从而能够将力学效应得到了最好的保存以及发挥,同时能够让预应力在全部的截面上能够使用一种较短的短传力路线进行相应的分布。在第二点上,顶部饿束锚能够定在承托上,也不需要使用较为复杂的齿板构造设置,也就能够完全的通过受力需要来控制和设计箱梁的尺寸。在第三点上,在水平方向上,顶部以及底部的钢束能够按照相同的形状进行固定,在这样的方式下,就能够保证集中的锚固点产生的横向力就能够被消除。
3.预应力技术的质量控制方法
在预应力技术的质量控制上,主要是需要在预应力锚具以及预应力的钢绞线进行选择的过程中就需要进行相应的质量控制,通过对钢绞线以及预应力锚具进行较好的选择,就能够保证在日后的预应力技术使用的过程中能够较好的进行。同时在进行预应力技术使用的过程中,在设计阶段就需要进行较好的设计,并且也需要按照设计的要求来进行,以保证预应力技术能够真正的达到要求。
4.结语
预应力技术论文第7篇
第一,预应力构件的生产数量与工程的施工期限;第二,预应力构件应该要安全适用、经济合理、质量好;第三,操作流程简便、可控性强、生产周期短、周转快;第四,耐久性强、模板拆装便利、设施可靠性强;第五,由于预制场场地的土质为砂性土,所以,施工人员在开挖时不可以深挖。面对此种情况,该项工程需要采用槽式、四横梁墩的台座进行预应力张拉和放张。
2预应力技术的应用问题
2.1预应力的构件发生断裂现象
最主要的问题大概有以下几点:在构件中,经常会发生裂缝的现象,荷载对桥梁的作用使得桥梁发生裂缝在所难免,相关的规范允许部分的预应力构件发生限制条件内的裂隙,部分在预制场内部的构件就应该避免干缩与温缩在张拉之前出现裂缝。这样的裂缝是具有不一样的特点的,通常它们会在构件的表面分布,并不均匀,裂缝较细,梁板等构件的裂隙大部分是短向的分布,位置并没有规律性,部分时候还会出现在箍筋位置。出现的频率也比较高,伴随着荷载的不断增加,部***缝会变大,随着时间的推移,裂缝就会越来越大,最终导致安全隐患的发生,更严重的还会发生道路或是桥梁的塌陷,造成安全事故等,使得人民群众的生命财产安全受到一定的威胁。
2.2预应力构件的张拉力失控
预应力的构件会发生张拉力失控的现象,主要是由于进行预应力的施工作业时操作的不规范,尤其是对预应力张拉控制的不得当就会影响到桥梁的质量,影响的效果较大。施工的过程当中要保证张拉作业都是采用预应力筋的伸长量与张拉力双制的,主要是张拉力,测量预应力筋的伸长值,对其进行准确的校核。但在实际的应用过程当中,由于相关的工作人员不严谨,所采用的千斤顶并未通过计量标定,相关的施工人员也并没有受到过专业的训练,对专业的知识不熟悉,工作的过程并不能按照要求的规定实施,对技术的使用不规范,这些都是影响张拉力,导致其失控的主要因素。这就会造成预应力构件的使用过程中,出现比较严重的技术性问题,从而导致了道路及桥梁的施工隐患。
3改进预应力技术应用问题的对策
3.1加强技术人员与施工人员间的合作
在工程施工的过程中,工程的技术人员应该同施工设计人员保持顺畅的沟通与良好的合作;并且,技术人员还应该要进入到施工现场中,对现场的施工行为进行有效指导,做好对已经施工完成的部分的检查工作;而且,还应该将工程设计方案交给施工人员,告知其重要的施工环节的技术要点,使得其能够明确施工过程中需要严格控制和密切关注的问题。与此同时,由于混凝土对工程施工质量具有直接影响,所以,技术人员还要将混凝土质量与施工方法告知施工人员、向其详细交代工程施工的张拉程序和注意事项,使得其能够更好的按照合同上的规范要求完成工程的施工工作[5]。
3.2提升技术人员专业技能