量子力学的建立始于对原子物理实验给出解释,其基本概念是从上世纪20年展起来的,并于30年代和40年代取得了快速而巨大的进展。特别是对全同粒子体系的深入研究最终导致现代基本粒子概念的诞生和量子场论的突破性进展,促进了人们对于宇宙的深刻理解。从更为实用的方面讲,量子力学理论体系的建立特别为固体物理与凝聚态物理的发展奠定了基础,它的广泛应用导致了在不同领域大量丰富多彩的人造量子系统的出现。尤其是近20年来,各种类型的纳米尺度的量子设备被成功地制造出来,它们在处理量子信息和制备纳米电路等高新技术方面具有引人注目的应用前景,从而受到广泛的关注。大多数学生希望了解量子力学理论应用于解决现实生活中的问题的解决方案。他们对于深入理解各种实用领域的量子理论基础方面的浓厚兴趣,远大于对现代超弦理论和宇宙学的或所谓的终极理论的兴趣。本书所针对的主要对象正是这类学生,作者期望将学生们的这些实际需求作为高等量子力学课程所涵盖的主要内容。
本书是作者在荷兰代尔夫特理工大学(Delft University of Technology)讲授高等量子力学课程内容的基础上撰写的。这所大学是研究诸如半导体量子点、超导量子计算设备、分子电子学等量子力学应用方面世界一流的中心之一。学校开设的很多理论课都是围绕更有效地支持这类研究而设计的。其中的高等量子力学作为研究生的必修理论课就是典型的代表。本书在开始仍然对初等量子力学做了简明扼要的介绍,然后很快将重点转移到应用这些理论来理解量子设备的实质性内容上来。作者力求使本书在理论技巧和数学知识方面的基础更加扎实,只要涉及到理论工具,一定会给出一些如何使用这些工具的实例。这些实例取自许多不同的领域,使得本书适应更为宽泛的读者群,特别是那些非粒子物理专业的学生。
全书内容分成5个部分,共计13章:第1部分 二次量子化,含第1-3章:1.初等量子力学;2.全同粒子;3.二次量子化。第2部分 例子,含第4-6章: 4.磁性; 5.超导; 6.超流。第3部分 场与辐射,含第7-10章:7.经典场; 8.场的量子化;9.辐射与物质; 10.相干态。 第4部分 耗散量子系统,含第11-12章:11.耗散量子力学;12.跃迁和耗散。第5部分 相对论量子力学,含第13章:13.相对论量子力学。
作为一部教科书,本书充分考虑了教学需要,叙述清晰、透彻,推导详尽。每一小节都有一些“控制问题”,帮助理解课文内容,并可用于课堂讨论。每一章末都给出了一些练习题,其中部分题目给出了详细解答。本书重点突出,特别适合于凝聚态物理相关专业的研究生选做高等量子力学的教材。