中学数学研究论文范文第1篇
“师生互动”这一课堂教学理念并不是新生事物,而是自古就有的。无论是中国古代孔子与弟子的座谈还是古罗马教育家昆体良提出的“教是为了不教”都或多或少的在形式和内容上成为“师生互动”的先导。要使“师生互动”这一理念真正内化到课堂教学方式中,我们必须明白不仅要教给学生知识还要教给学生获得知识的方法。教师在课堂上的角色就不能是单纯的给与者,而应该是获取方法的引导者。
数学具有高度的抽象性和严密的逻辑性,这就决定了学习数学有一定的难度。所以,在课堂教学中开发学生大脑智力因数、引导学生数学思维更要求师生间有充分的交流与合作,因而,师生互动也表现得更加突出。据我所知,多数数学老师在实践中的互动形式主要有:1.多提问,一堂课不间断的提问,力求照顾到全体学生;2..多讨论,老师讲完一个问题后,让学生分组讨论,然后再指派或让学生推举代表发言。这两种形式确实具有易掌控、易操作、有利于按时完成教学任务等优点。但我认为这并不是真正意义上的“互动”。真正的“互动”应具备下列几个要件:
一、师生互动,首先要强调师生的平等。
师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般的人际之间的关系,又在教育的情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。
应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。
怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。如果我们的教师仍然是传统的角色,采用传统的方式教学,学生们仍然是知识的容器,那么,把师生平等的要求提千百遍,恐怕也是实现不了的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。
二、师生互动,还应该彻底改变师生的课堂角色,变“教”为“导”,变“接受”为“自学”。
课堂教学应该是师生间共同协作的过程,是学生自主学习的主阵地,也是师生互动的直接体现,要求教师从已经习惯了的传统角色中走出来,从传统教学中的知识传授者,转变成为学生学习活动的参与者、组织者、引导者。现代建构主义的学习理论认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自身已有的知识和经验主动地加以建构;同时,让学生有更多的机会去论及自己的思想,与同学进行充分的交流,学会如何去聆听别人的意见并作出适当的评价,有利于促进学生的自我意识和自我反省。从而,数学素质教育中教师的作用就不应被看成“知识的授予者”,而应成为学生学习活动的促进者、启发者、质疑者和示范者,充分发挥“导向”作用,真正体现“学生是主体,教师是主导”的教育思想。所以课堂教学过程的师生合作主要体现在如何充分发挥教师的“导学”和学生的“自学”上。
举个例子,在初中几何中,讲圆柱、圆锥的侧面展开***时,教师的“导学”可以从实验入手,实际操作或演示就可很快得出结论:圆锥侧面展开***是扇形,此扇形的弧长是圆锥的底面圆周长,扇形的半径是圆锥的母线长。这种演示“导学”既直观又能引起学生注意,学生非常容易接受这个知识点。在上述老师提示后,学生自己阅读,找出本节的重点,新知点和难点,先自己利用已学知识尝试解决,攻克疑难问题。这是学生“自学”的过程,在老师做了演示之后,再让学生阅读,自行解决课本中的例题和练习。有了“导学”的认识,学生对本节课的知识点就相当明确,“自学”的过程实际上是在运用旧知识进行求证的过程,也是学生数学思维得以进一步锻炼的过程。所以,改变课堂教学的“传递式”课型,还课堂为学生的自主学习阵地是师生双边活动得以体现,师生互动能否充分实现的关键。
总之,教师成为学生学习活动的参与者,平等地参与学生的学习活动,必然导致新的、平等的师生关系的确立。我们教师要有充分的、清醒的认识,从而自觉地、主动地、积极地去实现这种转变。与此同时,我们也应看到,这次课改,从课程的设置,教材的编写,教学要求等许多方面,都为我们教师这种角色转变,提供了很多有利的条件(其实不转变角色已不能适应新课程实施的要求了)。我们应充分利用这些有利条件,在课改实验中,尽快完成这种转变,以适应新课程实施的要求。
三、创设问题情景,在教学过程中体现师生的合作与交流是“师生互动”的直接表现
在教学过程中,师生之间的交流应是“随机”发生,而不一定要人为地设计出某个时间段老师讲,某个时间段学生讨论,也不一定是老师问学生答。即在课堂教学中,尽量创设宽松平等的教学环境,在教学语言上尽量用“激励式”、“诱导式”语言点燃学生的思维火花,尽量创设问题,引导学生回答,提高学生学习能力及培养学生创设思维能力。例如,在教学“完全平方公式”时,可以这样来进行:
1.提出问题:(a+b)2=a2+b2成立吗?
(显然学生的回答有:成立、不成立、不一定成立等等)
2.引导学生计算:
①(a+b)(a+b)=
②(m+n)(m+n)=
③(x+y)(x+y)=
④(c-d)(c-d)=
3.引导学生发现①算式的左边就是完全平方式(a+b)2
②算式的结果形式是a2±2ab+b2
4.进一步提出:能直接写出结果吗(a+1)2=?
这样学生也就一下子明白了这个规律可以作为公式…
通过教师的诱导,学生的参与,使学生既认识了完全平方公式的形成,对该公式的掌握也一定有很大的帮助,这种探索精神也势必激励学生去习,从而提高学习能力。再如讲授一元一次不等式的解法:
例1解不等式4(1+x)<x+13
解:去括号,得
4+4x<x+13
移项,得
4x-x<13-4
合并同类项,得
3x<9
不等式两边都除3,得x<3
“无问题”教学可以是照本宣科,学生很快便会“依葫芦画瓢”,不知“所以然”,当然就难以有应变思维了。“创设问题”教学,教师设计以下问题让学生思考:
①不等式的结果(解集)的形式是怎样的?
②结果(解集)的形式与原题的形式有哪些差异?
③如何消除这些差异?
学生有了问题,自然注意力集中,思维活跃……
在学习新内容时,如果都能诱导分析,让学生开动脑筋,那么学生不但对知识理解深入,而且有利于他们创造思维的培养。如上例,学生弄清了去括号,移项等……是朝着解集的形式转化的目的后,对于解不等式,也就能很清楚知道“第一步是去分母”了。这也就是我们所希望的创造思维能力所起的作用。
古人常说,功夫在诗外。教学也是如此,为了提高学术功底,我们必须在课外大量地读书,认真地思考;为了改善教学技巧,我们必须在备课的时候仔细推敲、精益求精;为了在课堂上达到“师生互动”的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠,并不断更新;教学技巧是手段,必须生动活泼,直观形象;师生互动是平台,必须师生双方融洽和谐,平等对话。如果我们把学术功底、教学技巧和师生互动三者结合起来,在实践中不断完善,逐步达到炉火纯青的地步,那么我们的教学就是完美的,我们的教育就是成功的。
四、师生互动,还应该建立在师生间相互理解的基础上。
教学过程中,师生互动,看到的是一种双边(或多边)交往活动,教师提问,学生回答,教师指点,学生思考;学生提问,教师回答;共同探讨问题,互相交流,互相倾听、感悟、期待。这些活动的实质,是师生间相互的沟通,实现这种沟通,理解是基础。
有人把理解称为交往沟通的“生态条件”,这是不无道理的,因为人与人之间的沟通,都是在相互理解的基础上实现的。研究表明,学习活动中,智力因素和情感因素是同时发生、交互作用的。它们共同组成学生学习心理的两个不同方面,从不同角度对学习活动施以重大影响。如果没有情感因素的参与,学习活动既不能发生也难以持久。情感因素在学习活动中的作用,在许多情况下超过智力因素的作用。因此,新课程实施中,情感因素和过程被提到一个新的高度来认识。发展学生丰富的情感,是这次课程改革的目标之一。可以这么说,增进相互理解的过程,其实也是丰富、发展交往双方情感因素的过程。
教学实践显示,教学活动中最活跃的因素是师生间的关糸。师生之间、同学之间的友好关系是建立在互相切磋、相互帮助的基础之上的。在数学教学中,数学教师应有意识地提出一些学生感兴趣的、并有一定深度的课题,组织学生开展讨论,在师生互相切磋、共同研究中来增进师生、同学之间的情谊,培养积极的情感。我们看到,许多优秀的教师,他们的成功,很大程度上,是与学生建立起了一种非常融洽的关系,相互理解,彼此信任,情感相通,配合默契。教学活动中,通过师生、生生、个体与群体的互动,合作学习,真诚沟通。老师的一言一行,甚至一个眼神,一丝微笑,学生都心领神会。而学生的一举一动,甚至面部表情的些许变化,老师也能心明如镜,知之甚深,真可谓心有灵犀一点通。这里的灵犀就是我们的老师在长期的教学活动中,与学生建立起来的相互理解。
五、创设有利于师生互动的教学方式及组织形式。
教学过程中要实现师生积极互动,要求师生间有尽可能充分的交往活动。目前,中学教学班的班额还普遍偏大(一般50多60人,有的甚至达70多人),要实现充分交往活动是有很大难度的。因此,必须积极探索在现实条件下,有利于师生在教学过程中实现积极互动的教学方式及组织形式。
在教学过程中,由于教师采用的教学方法不同,一般存在以下三种主要课型:
1、以讲授法为主的课型;
2、以讨论法为主的课型;
3、以探究——研讨为主的课型。
第2、3两种课型所形成的交流方式比较好,在新课程实施过程中,有许多课都采用了这两种课型。这两种课型极有利于形成师生、生生、个体与群体的互动。
与这两种课型适应的教学组织形式有多种,但以小组为单位开展学习研究活动有更多的优越性。根据实践经验,这种小组以4——6人为宜,全班不超过10个小组。小组内成员轮流担任组长,负责召集工作及充当小组发言人。这种组织形式首先使小组内生、生交流互动比较充分。其次,因为人人都要当组长,所以对组内同学的意见、其他组同学的发言也都能注意地倾听。由于代表组内同学发言,主人公的意识也更强一些。每个组与老师的交流、对话也比较充分,较好地弥补了大班额条件下,师生、生生交往的不便,为互动创设较好的条件,是目前条件下有利于师生积极互动的一种比较好的教学组织形式。
中学数学研究论文范文第2篇
摘要:创新教育是知识经济时代教育的主旋律,也是新世纪发展的必然。数学教育在新世纪的竞争中担当着非常重要的角色。如何充分发挥数学学科特点和作用,实现数学素质教育和数学人文素质教育,是新世纪探索的主题,数学作文为学科综合、学科渗透、创新精神和实践能力的培养创造了良好的契机。
关键词:创新数学作文
1、背景
1.121世纪数学的作用
联合国教科文组织将世纪之交的2000年定为“世界数学年”(WMY)。
在历史上是第一次用学科来命名一个年代,其宗旨是“使数学及其对世界的意义被社会所了解,特别是被普通大众所了解。”
在21世纪,数学的作用不仅表现在科学技术之中,在社会发展中也将大显身手,成为构筑当代文明的基石。王梓坤院士在《今日数学及其应用》中指出:数学与人类文明同样古老,有文明就必须有数学,缺乏数学不可能有科学的文明,数学与文明同生并存以至千古。数学将是社会变化的有力工具。
数学的确定性,使它成为一种国际规范语言,保证人们准确进行信息交流,数学将从单纯的学科发展成为信息时代的一种普通技术。
数学的严谨性和抽象性特征,使数学所具有的文化价值,历来受到人们的重视。王梓坤院士指出:今日的数学对国家的贡献不仅在于国富,还在于民强。数学给予人们的不只是知识,更重要的是能力,数学思维与思想方法有助于提高全人民的科学文化素质,是人类巨大的精神财富。所以,数学是21世纪公民的重要素质。
1.2现代数学教学观
传统教育把“传道、授业、解惑”当作基本使命,教育就是把基本知识、技能传授给学生,以培养能够适应社会的下一代,所以知识就是目的。这种模式就是应试,升学!而知识增量的加速,知识外储化的趋势,以及伴随知识不断更新而出现的终身教育和全民教育思潮的兴起,对以知识为中心的教育提出了挑战。教育再也不被限于传授知识,更重要的是要培养学生获取知识的能力。培养学生的理想、热情、信心、责任感等。
从创造的角度讲,知识为创造提供了材料支持。获取知识的能力,即科学的思维方法和学习方法,为创造提供了技术支持。非智力因素,即情商为创造提供了动力支持。这一切正是创新的源泉,是个人发展不竭的动力。进而知识在教育中的地位发生了变化:教育是以育人为中心,是以活生生的、整体意义上的人格为中心。
1.3教育发展的需要。
社科院四川分院研究员查有梁在《论新世纪的新教育》一文中指出,21世纪教育的发展方向为:和平发展教育、终身素质教育和科学人文教育。这是新世纪的三大特点,彼此交叉渗透,走向整合。新世纪的素质教育落实,必须实施科学人文教育。科学类课程,包括理工学科和技术学科在内的课程;人文类的课程包括文史哲学科,以及音乐、美术、艺术在内的课程。20世纪的教育中,由于文理的严重分割,形成素质有明显缺陷的两类知识分子群体:科学知识分子和人文知识分子。这两类知识分子存在一条难以理解沟通的鸿沟。科学人文教育是新世纪新教育的价值观,有科学精神的人文教育,才是有价值的人文教育;有人文精神的科学教育,才是有价值的科学教育。科学教育与人文教育,两者紧密相关,在新世纪应相互渗透,走向整合。在数学教学中,数学作文为学科综合、学科渗透创造了良好的契机。
2、数学作文
2.1作文。简单的说,作文就是写文章,多指学生练习写作。作为名词“作文”一般指学生作为练习时所写的文章。
从小学到中学,作文几乎都是语文单科的专利,作文的内容丰富多彩,文体也别具一格,如说明文、记叙文、议论文、散文、诗歌等。
2.2数学作文。简单地界定,数学作文就是学生写自己有关学习数学的体验与收获的文章,其内容一般应是学生通过老师的教、自己的学和探索的过程,根据自己的体验、感受和收获,来揭示数学的本质,揭示数学素质教育的功能,揭示数学的知识价值、文化价值、应用价值,甚至是更高层的理性价值。可简单地认为:数学作文可以是对数学现象、数学问题的看法、认识和探索;可以是对数学中简洁、统一、对称等美的认识和感受;可以是对数学学习兴趣、动机、方法、思想等的感想和反思;可以对数学知识、教师教学等的批判性思考;可以是对数学思想方法和数学知识的应用探索,跨学科应用、整合的理解;可以是科学与人文的整合的创新,甚至是由数学而产生的科学幻想和猜想,……就文体来讲,数学作文也可以是说明文、记叙文、应用小论文、议论文、诗歌、散文、故事等。
2.3数学作文题设计与实施应遵循的原则
2.3.1双主体原则
教师主体、学生主体的双主体原则是设计和实施作文的关键。教师应充分挖掘教材、教法,广泛阅读和理解相关内容,精心设计引言,并在实施过程中,积极指导,开拓学生思路。学生是学习的主体,要主动参与,积极思想,充分发挥其主观能动性和创造性。
2.3.2科学性原则
教师设计作文题应当遵循学生目前的认知结构水平,充分考虑学生知识结构的有序性和适应性,要遵循学生的认知规律,遵循学生具备的知识和经验。学生一般从感性到理性,从具体到抽象;再由抽象上升到具体(理性具体)的认知程序。感性材料既是形成表象的基础,又是引导学生抽象概括和理性分析的起点。所以,在设计和实施前应为学生提供丰富的感性材料,比如鲜活的生动的事例、***片、***形、幻灯、录像、教具等,并要考虑如何引导学生进行分析、比较、综合、归纳、演绎、抽象、概括等,从而丰富数学内涵。
2.3.3学生自愿参与性原则
设计时既考虑学生的认知基础又要给学生思考的余地,让学生感受到自己是可以***完成的,又因为数学作文题是数学新问题,还没有形成重要的经验和教学目标、内容及完整的评价体系,尚处探索之中,应当遵循学生自愿参与的原则,比如在选修课、活动课等校本课程中开设作文训练课,它将是有益的探索,也将有光明的前景。
2.4数学作文的评价初探
总之,评价是主观的,是难驾驭的,但其目的——促进学生全面发展是明确的,对数学作文的评价总结以下三个原则:
2.4.1激励性原则
学生学习的本质是为了人的发展,激励性原则将产生强有力的内驱力和外驱力,促使学生对数学产生浓厚的兴趣和良好的动机,有利于对数学深入的学习和探索,也有利于综合学习。
2.4.2开放性原则
对学生的数学作文,没有象学生在语文高考作文那样的评判等级,最好也不去产生。因为数学有它本质的特征,笔者认为,只要是学生原始的、真实的感受和大胆的猜想,都给予充分肯定,即使学生的观点、结论是错误的,只要他说得有道理,都当评定为优秀作文。数学作文中,没有差生。评价项目多一点,就可能多出一批各有所长的好学生。
2.4.3美学原则
列宁在《唯物论与经验判断论》中,说我们对某种事物的感觉是人对客观事物的主观反映。则可以说人对客观事物的审美评价就是美,即使是丑的东西,我们也可以从批判性的角度来认识其中的美的存在。对数学作文的评价,应从各个维度去表扬学生,发现学生的创造力和创新意识。
2.5数学作文题目的设计与实施
2.5.1选题
选题应遵循前面的原则,下面谈一点体会:
选题可以只从某一角度入手,也可以从某一事物的各个维度入手。涉及到智育、德育、美育、心理、动手能力等方面,让学生有广阔的切入点。教师可以从知识、方法、问题、变式训练、课外活动、数学史话等具体事物入手,选定有意义的题目。
2.5.2写引言
引言,相当于材料,通过老师深入地分析和理解,并查阅相关理论、科学的资料,把所选题目阐述清楚,并作出有益的引导,开拓学生的思维空间和思考方向。
2.5.3实施
把写好的材料发给学生,让学生操作,一般给三天左右时间,保证学生有充足的时间查阅相关资料,进行反思、分析,完成较高质量的文章。
2.5.4批阅,交流,总结
学生交作文后,教师认真评阅,对每一篇文章指出其闪光点,找准学生的创意和有益的地方,并作出评议,给出恰当的评语。然后组织学生进行小组交流,一般一个小组4—6人为宜,相互交流,包括创作的动机、思想和结果。这样极大地调动了学生的积极性,更重要的是发生了思想根源上的交流与碰撞,将产生巨大的创造力。学生的潜力是无限的,有时它比老师的认识还要深刻,还要深远!最后总结,发现同学们的变化令人欣慰;他们实现了学科综合,涉足宽广,他们浓烈的兴趣和对数学的热爱,他们对数学知识思想、方法的更深刻的了解,他们的创新思想,……都让我感激不已,这是多年来教学中从未有过的现象。
2.6数学作文实施的意义
2.6.1数学作文的探索可能是中学教改的有益探索。社会科学与自然
科学的渗透和结合,是新世纪教育发展的必然,学科综合是教改的必然。
数学作文从各个侧面渗透,从而实施素质教育。比如美育教育,这是最不好实施的目标,但在学生的作文中,自己对数学美的体验和见解可以入木三分。(例文略)21世纪的课程改革应当适应全球经济、***治、文化的发展,素质教育是21世纪教育的主流,相应的数学观、数学教学观的改革已迫在眉睫。
2.6.2它是校本课程开发的重要内容
我校作为“国家首批示范性高中”在课程改革上迈出了大步伐,国家
课程、选修课程、校本课程共同发展,为国家培养高级管理、高级技术的后备人才。“数学作文”作为活动课程,在实施的半年中产生了很大的效益。
2.6.3学生的数学素质得到了提高
首先是对数学的兴趣更高,更加热爱数学了,兴趣与爱好更广泛了,因为在参与数学作文中,都得到了肯定和表扬,数学作文没有差生。在数学作文中有利于培养学生的人格与人品,保护他们的自尊与自强,激发他们的激情与梦想。其次,数学成绩普遍提高。因为有了兴趣,方法改进,学得更扎实,更有信心。再次,学生对数学的本质认识更加深刻,从作文中发现学生从不同角度的认识都给老师们提出了挑战!
2.6.4对教师提出了更高要求
在实施中,数学通过广泛的学习,收集整理资料、利用现代化的信息手段,写出了令人深思的文章,甚至是有很多新名词、新事物、新观念,让我们老师深感知识上的不足和涉及范围不广,给我们提出了挑战。这样激发教师不断进行继续教育,提升自己,向科研型方向转化。
培养兼备高尚品德与聪明才干,兼备“创新精神”与“实践能力”,具有鲜明个性且善于合作的一代新人,是时代对教育的要求,是社会对教师的期望。
2.6.5发展学生的个性
相信人人都有才,努力挖掘每个学生的发展潜能。不是每一个学生在数学成绩上都是姣姣者,有的同学甚至数学分数很低,但他(她)在数学作文中表现的独到超过了高分同学。每个人都有进步的愿望,每个人都有丰富的潜能,每个人都有自己的智能优势。数学作文提供了一个广阔的舞台,充分展示学生的个性,每一个参与的学生都能得到发展!
3、反思
数学作文题,是数学教学中的新问题,需要全社会积极投入、探索,完善它的目标、内容、评价原则,从而在数学教学中占有一席之地,它将是一片沃土,孕育无限的创新!
中学数学研究论文范文第3篇
摘要:本文介绍了我国现代中学数学教育工作者的现状,对新课程标准的制订和执行、新教材的编写、教师的教学、学生的评价、教育观念等方面进行了认真的思考,提出了一些注意事项和对社会的呼吁。
关键词:新课程标准,教材编写,教师教学,学生评价,教育观念。
现代中学数学教育是基础教育非常重要的一部分,对于培养中学生***思考能力、分析能力、推理能力、计算能力、空间想象能力等都是非常重要的,是“素质教育”的内涵之一。
几年前,我国数学教育工作者提出:中学数学的素质教育或者说中学数学素质的教育是——人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。[1]
对于现代中学数学教育的现状,美国内布拉其斯加大学数学教授史蒂文·邓巴认为:“之所以杜克大学的篮球水平始终能够保持在美国顶尖位置上,就是因为学校、教师以及家长们的通力合作,才造就出一批又一批篮球精英。然而目前美国中学的多数学生只知道把数字填进公式里,而不去理解怎样运用这些数据去解决实际问题。这正是我们在中学数学教育方面失败的所在。”
美国***和教育专家们认为,一些亚洲和东欧国家在中学数学教学中,注意培养学生的分析、论证和解决问题的能力。而美国则把注意力放在一般的书本练习方面。这些完全不同的方法使得美国中学生数学成绩不佳。美国数学教育专家们呼吁,重新制定数学教学大纲。把解决问题、理解概念和实际应用三者结合起来,设计和安排教学内容,以尽快提高美国学生的数学水平。
20世纪以来,数学发生了巨大的变化,与计算机的结合,使数学在研究领域、研究方式和应用范围等方面得到了空前的发展。现代中学数学教育地的观念和内容也与以往有所不同了,解决问题、理解概念和实际应用三者结合起来就是现代数学教育的主旋律。
当前我国中学数学教育的大致情况是,学校里爱好数学、成绩好、又觉得比较轻松的学生不太多,多数学生对学习数学缺乏兴趣。花的力气不少,但成绩并不好,数学成了学习的负担,拦路虎。大多数学生很难达到理想的数学水平和能力。其中有课程标准要求过高的原因;有教材内容过多过繁的原因;有教师水平不整齐,教得不够活的原因;更有现行评价体制的原因,因为数学是主科,总归是要考的,应试、要考高分的牵制力是很大的。
随着新的课程标准的出台,将会逐渐改变这种局面,但是执行新课程标准的人数以万计,我们必须统一认识,为我国中学数学教育发展,为培养新一代人才而达成共识。
一、关于课程标准的思考
由美国数学教育家的呼吁可见,课程标准是左右一代人的数学素质的行动性纲领,不可不高度重视,不可不认真制订,不同的课程标准培养出不同的人。在重视数学素质教育的课程下,培养出来的人雨季一定比注重数学分数的应试教育的课程标准下的人才要多而且精。可以说课程标准是指挥教材编写、教师教学、学生学习、社会和家长形成数学教育观念的魔棒。在教育普遍受重视的今天,课程标准的制订更是关乎一代人的成长与发展的最重要的纲领性文件。
我国现行的课程新标准较以往的课程标准,显然是先进了不少,更符合国性和现代化建设的需要,其制订的基本理念是突出体现基础性、普及性、应用性、发展性、创造性,现阶段看来是合理的,课程新标准要求数学教育要面向全体学生,这也是完全正确的,也完全符合数学文化素质的内涵。
课程新标准界定了数学素质的内涵,其中不同的人在数学上得到不同的发展更是精华;把数学看成是工具,用以处理数据、进行计算、推理和证明等;把数学看成是为其它科学提供语言、思想和方法的基础学科;把数学看成是培养推理能力、抽象能力、想象能力和创造能力的手段;把数学看成是人类文化的组成部分。后二者是十分重要的理念,这就为数学的素质教育各个环节拓宽了视野,开启了思路。
如果要求大部分人都掌握高深的数学计算、推理和证明,把数学当作是人人都必须掌握的接受进一步教育的敲门砖。当然会使有的青少年把数学当作拦路虎而不当作培养能力的手段和数学文化,从而使在其它领域本的所发展和创造的人才。因为数学的缘故而失去信心、失去机会,这当然是课程标准的罪过而不是数学的缘故。但是,课程新标准也存在一些问题,如从实践的角度考虑,如何解决“个体化教学”与班级授课制这一现实之间的矛盾[2]。课程标准的制订应是一个长期的探索的过程,不可能几个专家一挥而蹴,要反复实践,不断修改,不断更新,以适应新时期发展的需要。
总之,有了新的课程标准,便会有相应的新教材,相应的新教法,相应的新学法,相应的新评价,相应的新理念,也会改变现代中学数学教育的现状。
二、关于教材编写的思考
教材为学生的学习活动提供了基本的线索和工具,是实现课程标准、提高数学素质、实施数学教学的重要资源。教材和课程标准一样是造就一代人的数学素质的工具,不可不高度重视,在班级授课制的教学体制下,一定程度上,可以说用什么样的教材就能培养什么样的人才,毫无疑问,在课程新标准下的教材的编写,已不再是过去那种单一化的版本,而是百花齐放的局面,这为各类学校提供了比较和选择的余地。可以根据校情、班情进行选择,这是一大进步。
新教材所选择的数学素材,就来源于自然、社会与科学中的现象,是密切联系当前生活实际的问题,把数学问题生活化,让数学知识回到现实生活中,将其产生和发展的过程返璞归真,给学生创设问题情境[3],不要为问题而脱离实际,使数学纯化,与生活产生隔阂,但也要反映一定的数学价值,将数学本来的魅力充分展现出来。
新教材的内容编排和呈现突出了知识形成与应用过程,轻结果重过程,体现了螺旋上升的原则,采用逐步加深的方式,引导学生对数学知识、思想和方法的理解,这比以往的教材改进了许多。
新教材的最重要的一个特点是关注了学生人文精神的培养,介绍了有关的数学背景,特别是设计上先进了许多,这是很好的。作为数学教师应深入领会教材的编写意***,摈弃传统的教育理念,以提高学生的数学素养为最终目的,充分发挥教材的教育和教学功能[4]。
但是,在众多执行新课程标准的人中,教材编写者是第一批执行者,若他们偏离轨道。真可以说是差之毫厘,谬以千里,事实上,从目前的教材看就有此嫌疑,分明新课程标准不作要求的内容或者说已过时的内容,不在正文中出现,便要在教材的习题中出现,于是下面教学者,进一步扩大其力度,再走几步,可想而知,课程新标准也就新不了了,和原来列二致,这当然是指少数内容了。所以,好的教材应是以课程新标准为依据的,不偏不倚,恰如其分,带头执行课程新标准的。
总之,的了新教材,便会的相应的新素材,相应的新教法,相应的新学法,也会改变现代中学数学教育的现状。
三、关于教师教学的思考
数学教学是数学活动的教学,是数学思维过程的教学,是师生之间、同学之间交往互动与共同发展的过程。
数学教学应根据所要完成的教材内容,从学情出发,在课堂教学中创设有助于学生自主学习的问题情境,发挥学生的主体性,课堂上教师要摒弃师道尊严,发扬教学民主。激发学生的学习潜能,鼓励学生大胆创新与实践,同时发挥教师的主导地位,组织、引导学生的数学学习活动,与学生合作,努力引导学生从已有的知识和经验出发,进行自主探索现合作交流,并在学习过程中逐步学习、渐渐进步,引导学生通过实践、思考、探索、交流,获取知识,形成技能,锻炼思维,发展能力,学会学习,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习,不仅学到知道,更学到方法、思想。从目前的情况看,数学教学的情况远非如此,估且不论教师的水平是否可以达到,就教师的态度就值得怀疑,有的教师想如此却不敢如此,这与社会的教育观念相关。
教师教学离不开数学教材,数学教材是数学教学的媒体,是学生学习活动的主线,教材不可能适应每个班每个人,教师要发挥主动性和积极性,创造性地使用教材,进行创造性教学,结合学情利用教材,在课堂上,关注学生要多于关注教材,教育是一种关注,关注学生的成长,关注学生的学习目的,学习内容,学习方式,学习环境,关注学生的个体差异[5],适时地实施有差异的教学,使每个学生得到充分的发展。事实上,关注教材比关注学生多的情况还存在,忽略学生的学习目的,学习内容,学习方式,学习环境,忽略个体差异的情况更是比比皆是,教师的教育观念也有待改变。
教师教学还要好紧跟时代,利用现代教育技术在教学中的应用,有效地使用多媒体技术,多媒体技术可以使学习的内容***文并茂,栩栩如生,自然增加了教学的魅力,使学习者保持良好的学习兴趣,提高教学效益[6]。从目前的情况看,现代教育技术还停留在纸上者居多,现代教育技术的培训也是走过堂,没有真正落实,甚至有的地方现代教育技术的设备只是不动产而已,这是相当可惜的资源浪费。可以说,今天让学生使用坏一台电脑,将来他会创造出若干台电脑,教育要舍得投资。
四、关于学生评价的思考
教与学都要评价,评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展,评价也是教师反思和改进教学的有力手段。
对学生数学学习的评价,传统的评价手段比较单一,主要是测验与考试,只关注学习对知识与技能的理解与掌握,只关注学生数学学习的结果,事实上对学生数学学习的评价还要关注他们的情感和态度的形成和发展,还要关注学生的学习过程,评价以定性描述为主,充分关注学生的个性差异,不要把学生理想化。对学生数学学习的评价手段和形式要多样化,要重视数学学习过程的评价,课堂上适时对学生进行评价,保护学生的自尊心和自信心,发挥评价的激励作用。
对学生数学学习的评价,不仅仅是评价学生,还应评价教师的教学,教师要善于利用评价所提供的大量信息,适时调整和改进教学方法。有部分教师还认为对学生数学学习的评价只是评价学生,这中、是不对的。
五、关于教育观念的思考
现在,家长和社会的教育观念一定程度上还停留在应试教育观念上,甚至一部分教师也不例外,之所以出现这种现象,不在于课程标准,也不在于教材,而在于教师的教学和对学生的评价上。
首先,现在对学生评价的手段单一,还是定量评价为主的唯分数论英雄,在高考的指挥棒下,学生要当英雄就昼拿高分,学生的学习热情不是被激励出来的,而是利益驱动下产生的。
其次,现在教师教学也并未脱离应试教育,素质教育还停留在口头上,对教师而言,不是不想进行素质教育,这里有水平、观念的原因,也有其它原因,还有社会观念的原因。
素质教育观念的形成,光靠课程新标准的制订和执行,光靠新教材的开发利用,光靠教师和新教法,靠新的学生评价机制,都不足以形成,必须一步一步地走,中一个漫长而复杂的过程。为了尽快缩短这个过程的时间,的有利于国家和民族的强大,多出人才,必须大家都行动起来。
参考文献:
[1]《数学课程标准(实验稿)》北京师范大学出版社2002
[2]《改革热潮中的冷思考》郑毓信《中学数教学参考》9/2002
[3]《新教材中的问题情境创设》陈辉志大才疏《湖南教育》6/2003
[4]《引言教学的心理学意义》刘吉存/孔令夯《中学数教学参考》12/2002
[5]《教学过程就是一个关注的过程》桂文通通《中学数学》12/2002
[6]《浅谈计算机辅助教学的优点》李征《中小学素质教育》7·8/2001
中学数学研究论文范文第4篇
问题解决(problem-solving)在国际数学教育界受到普遍的重视,并被引入一些国家的数学课程中。全美数学教师理事会在《行动的议程》中明确提出应以“问题解决作为学校数学教育的中心”;在《美国学校数学课程与评价标准》中,“作为问题解决的数学”是各个年段数学课程的首要标准;全美数学督导委员会从职业教育和继续教育的要求出发,提出21世纪学生应具备的12种“基幢的数学能力,问题解决是其中的首要能力。英国***P高中数学教科书中,有一册就是《问题解决》。在近几届国际数学教育会议上,问题解决始终是重要的议题。今年7月在西班牙举行的第八届国际数学教育会议上,第10个专题小组就是“贯穿于课程中的问题解决”。我国许多学者认为,问题解决将对数学教育的各个方面产生影响。
问题解决产生的背景是什么?它的意义是什么?它对我国中学数学课程建设有何重要性?怎样在中学数学课程中体现问题解决的思想?本文拟对此作初步探讨。
一、背景和意义
19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。
什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。
有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。
从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。
简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。
问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。
二、“问题解决”的重要性
问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:
(一)时代呼唤创新
在国际竞争日益激烈的当今世界,各国***府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。
(二)我国数学教育的成功和不足
我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。
(三)数学观的发展
数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。
(四)问题解决过程和方法的一般性
在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。
三、“问题解决”和中学数学课程
问题解决在各国的中学数学课程中的引入方式各不相同,英国***P数学课程专门设置了一种问题解决课,我国人民教育出版社出版的义务教育初中数学课程中设立了实习作业、应用题、想一想、做一做等,在高中数学试验课本中也增加了研究题等,这些和问题解决思想是一致的。笔者认为,从目前中国的实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:
(一)鼓励学生去探索、猜想、发现
要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。
学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和***思考、勇于探索的精神。
无论是教科书的编写还是实际教学,在讲到探索、猜想、发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。
(二)打好基础
这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试***去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。
教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。
数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。
(三)重视应用意识的培养
用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。
当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。
此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。
(四)教一般过程和方法
在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。
由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决问题的计划,计划往往是粗线条的;3.实施计划,在实施计划的过程中要对计划作适时的调整和补充;4.回顾和总结,对自己的工作进行及时的评价。
问题解决的常用方法有:1.画***,引入符号,列表分析数据;2.分类,分析特殊情况,一般化;3.转化;4.类比,联想;5.建模;6.讨论,分头工作;7.证明,举反例;8.简化以寻找规律(结论和方法);9.估计和猜测;10.寻找不同的解法;11.检验;12.推广。
(五)创设问题情景
1.一个好问题或者说一个精彩的问题应该有如下的某些特征:(1)有意义,或有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味,有挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题是简明的,问题情景是学生熟悉的;(4)时机上的适当;(5)难度的适中。
2.应该对现有习题形式作些改革,适当充实一些应用题,配备一些非常规题、开放性题和合作讨论题。
(1)应用题的编制要真正反映实际情景,具有时代气息,同时考虑教学实际可能。
(2)非常规题是相对于学生的已学知识和解题方法而言的。它与常见的练习题不同,非常规题不能通过简单模仿加以解决,需要独特的思维方法,解非常规题能培养学生的创造能力。
(3)开放性问题是相对于“条件完备、结论确定”的封闭性练习题而言的。开放性问题中提供的条件可能不完备,从而结论常常是丰富多彩的,在思维深度和广度上因人而异具有较大的弹性。
对于这类问题,要注意开放空间的广度,有时可以是整个三维空间、二维空间、扇形区域中,有时也可以限于一维空间甚至若干个点上,把问题的讨论限制在一定的范围内。
(4)合作讨论题是相对于常见的***解决题而言的。有些题所涉及的情况较多,需要分类讨论,解答有较多的层次性,需要小组甚至全班同学共同合作完成,以便更好地利用时间和空间。这种题可以编入课堂练习题中。实际教学中可以把学生分成若干小组,通过分类讨论得到解决。合作讨论题能使学生互相启发、互相学习,激发灵感。英国的***P高中数学教科书中的一些问题可供参考。
中学数学研究论文范文第5篇
[内容摘要]本文通过计算机与传统教学媒体的对比实验,探索科学地应用现代教学媒体,优化课堂教学,促进学生有效学习,提高教学质量的方法和模式,为现代教育技术支持下的中学数学教学改革提供参考依据。研究结果表明:科学地应用数学CAI能优化教学过程,有利于培养学生创新精神和创造力,提高学生的数学素养。本文还就如何有效开展数学CAI进行了探讨。
[关键词]教育技术;数学CAI;改革
一、课题研究背景、目的与依据
(一)背景与目的
21世纪,人类面临着文明史上的又一次大飞跃--由工业化社会进入到信息化社会,世界各国面临着更为激烈的国际竞争,实际上是经济实力的竞争,科学技术的竞争,归根到底是人才的竞争,而人才取决于教育。因此,世界各国对教育的发展及信息技术在教育中的应用都给予前所未有的关注,并采取措施试***在未来的信息社会中让教育走在前列,以便在国际竞争中立于不败之地。面对这种形势,***部长强调指出:"要深刻认识现代教育技术在教育教学中的重要地位及其应用的必要性和紧迫性,充分认识应用现代教育技术是现代科学技术和社会发展对教育的要求,是教育改革和发展的需要。"吕福源副部长也在多次讲话中强调要把现代教育技术与各学科整合作为深化教育改革的"突破口"。因此,探索如何应用现代教育技术深化教育改革,是摆在我们教育工作者面前的一项十分紧迫而又重要的课题。
从我国中学数学教学现状来看,依然大多采用传统方式教学,其存在的突出问题:一是课堂教学效率低,对学生能力培养不够;二是缺乏理想的教学媒体,使某些概念难以描述清楚;三是无法及时反馈,难以实现因材施教;四是重教轻学,不利创新人才的培养。因而,科学地运用现代教育媒体,促进教学整体优化,改革传统的以教师为中心的教学模式,是深化教育改革的需要,也是摆在我们面前的迫切任务。本课题实验旨在探索科学地应用数学CAI的优势,优化课堂教学过程,改善数学课堂教学结构,促进学生有效学习,提高学生数学能力,进而提高教学质量的方法和模式,以便更好地指导今后的教学实践。
(二)实验依据
1、传播学理论。按照传播学理论,教学过程也是一种传播现象,一切用于教学的传播媒介,都必须从传播的有效性出发,选择适当的方式方法,使信息接收者易于接受和领会。传播学的有效性理论对于我们研究计算机或计算机网络作为传播信息的媒体在教师和学生之间传递教学内容的数量、速度和有效性具有非常重要的指导意义。
2、建构主义学习理论。该理论认为,知识不能从一个人迁移另一个人,而是学习者在一定的情境即社会背景下,借助他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过建构意义的方式而获得。网络化的教学环境使本理论的实施成为可能。
3、数学学科的特点。数学教学的核心是培养思维能力,包括思维的发散性、深刻性、批判性、灵活性等。CAI以其到交互性强、运算速度快、***文音象并茂、及时反馈结果等优势为学生提供了发展自我思维能力的空间。
4、21世纪对人才的要求。《中国教育改革和发展纲要》指出:"教育改革和发展的根本目的是提高民族素质,多出人才,出好人才"。为了能应对21世纪的挑战并适应未来社会的发展,要求学校培养的应当是具有更多发散性思维、批判性思维和创造性思维,即应当是具有高度创新能力的创造型人才,而不应当是不善于创新也不敢于创新的知识型人才。
二、实验方法、原则与内容
(一)实验方法
1、实验对象:本实验选择福州屏东中学初二(3)班为实验班,初二(6)班为对比班,两班人数分别为53人和54人,其数学前测成绩见附表1~3。
2、教学方法:实验班采用计算机辅助教学,对比班采用传统媒体教学。
3、实验变量及其控制:(1)自变量:教学媒体的运用方法。(2)因变量:学期末两班学生接受同一份测验的成绩。(3)干扰变量的控制:实验班与对比班学生数量、基础、师资力量基本相当,教材、课时、作业、测试内容、评分标准完全相同;在实验过程中,不让学生知道在参加实验。
4、数据分析处理:本实验采用准实验设计中的不相等实验组与控制组前测后测设计,并采用***样本的Z检验对实验结果进行统计分析。
(二)实验的教学工作原则
根据现代教学理论、数学学科的特点和本实验要求,在实验中我们坚持以下三大教学原则:一是效率原则。CAI的目标是解决传统教学所面临的低效问题。因此,必须在教学时间、精力,费用投入相对恒定的情况下,追求最好的教学质量和教学效果;二是与传统教学媒体优势互补原则。计算机具有交互性强、运算速度快、***文音象并茂、及时反馈结果等优势,但并非所有的教学内容都要用计算机,有的内容用传统教学手段能很好解决,就不必采用计算机处理,应当运用CAI的优势克服传统教学媒体的不足,实现计算机与传统教学媒体的优势互补;三是以教师为主导、学生为主体的教学设计原则。数学教学过程是教师和学生对数学的意义和价值进行合作性建构的过程,学生是认知的主体,是意义的主动建构者,教师是学生建构活动的设计者,组织者、引导者、帮助者和促进者,必须按照这个原则来进行教学设计。
(三)实验内容
在教学中以《几何画板》为基本软件,并教会学生使用,教师讲课时可采用现有的工具软件(如Word,Powrrpoint等)作为辅助软件,把计算机技术融入到数学教学中--就象使用黑板、粉笔、纸和笔一样自然、流畅。根据现代教育理论及课题实验的目的,我们构建了数学CAI的课堂教学结构,其过程如下***所示。其各环节的基本含义和内容是:
1、创设情景:良好的问题情景,可以激发学生的思维兴趣,有效地激发联想,唤醒长期记忆中有关的知识、经验或表象,为掌握新知识创造一个最佳的心理和认知环境。其方法和途径是:(1)在教学过程一开始,提出对一节课起关键作用的、富有挑战性的、能够激发学生学习兴趣的问题,以唤起学生原有认知结构与学习新课题的认知冲突,诱发学生的求知欲。(2)围绕教学内容的引入、递进、深化,充分利用多媒体计算机创设能启迪学生思维的教学情境。(3)围绕教学环节的衔接、转折延伸,创设能引起学生思考和情绪激动的教学情境。
2、引导探究:数学学科的高度抽象、形式化的特点,决定了学生在学习数学的过程中,要真正地理解并掌握数学,进而领悟数学中的精神和思想方法,必须要经历一个"再创造"的过程。CAI为学生的数学活动营造了一个理想的环境,在数学CAI课上,学生可以观看教师演示或通过自己的动手操作,从动态中观察、探索、归纳,发现规律,得出结论,实现了对知识意义的主动建构。这对发展学生的认知能力,培养学生的创造力,提高数学素养是大有裨益的。
3、组织交流:数学学习需要交流,这是数学教学过程中不可忽视的重要环节。因为学生学习数学不仅需要听,而且更需要自己做和说,有机会探究观察,交流数学概念或原理的形成过程和答案。一堂好的数学课,应该是在教师的组织下全体学生积极参与教学过程的课,是师生之间、生生之间通过讨论、交流而取得对知识本质共识的课。这样的课堂上,学生的思维处于高度运转状态,知识便在教师指导下,通过交流反馈,学生自己主动建构方式而获得。
4、变式训练:学生在探究、交流中获得的初步概念与技能,只有通过深化和熟练,才能切实掌握和应用,变式训练就是使之深化、熟练的基本环节。通过变式训练一是有助于排除非本质特性的干扰、容易混淆情况的干扰和复杂***形背景的干扰,同时还可提高新旧知识的可分辨性;二是扩大了概念、公式、定理、法则应用的范围,有助于提高学生的概括能力;三是摆脱了"示范--模仿--练习"的习题训练单一模式,有利于培养学生***思考、灵活转换、举一反三的能力,促进发散性思维的发展。
5、归纳小结:本环节是对已经得到的新知识或概念进行进一步的疏理、概括、归纳和强化。即通过必要的讲解或设问引导学生对获得的新知识和新技能适时归纳出带有一般性的结论,使其纳入学生原有的知识系统,或对原有知识系统进行改造、扩充、提高,使之包容它们,从而构建更高层次的知识结构。
6、反馈调节:在现代教育技术支持下,反馈调节可以两方面进行,一是教师在教学过程中通过观察、提问、课堂巡视、课内练习等途径及时了解和评定学生的学习效果,有针对性地进行答疑和讲解。二是学生通过网络教室的人机交互,立即反馈可以及时了解自己对所学知识的掌握情况,自我或在教师的指导下纠正偏差,弥补知识缺陷,提高学习效果。
(四)实验结果
1、提高了学生的数学学习成绩。附表1~7直观地反映了本实验前后学生学习成绩的变化情况。这两个班在前测成绩相近的情况情况下,经过一个学期的教学,实验班的优秀率比对比班提高了23.2个百分点,表6表示两班后测分数差异显著性检验的结果,两班的平均分数相差7.73分,计算Z=3.14,P<0.01,说明实验班和对比班在测验的平均成绩上存在显著差异,实验班的成绩明显高于对比班。从表中还可以看到实验班的标准差明显小于对比班,这说明实验班的整体水平有所提高,成绩分布相对集中,处于较好的稳定状态。而对比班有两极分化的趋势,属于不均衡发展。表3和表7是实验班与对比班前、后测标准分比较分布***,从***中可以看出,实验班学生的数学成绩不仅与对比班相比有显著提高,而且与年级平均成绩相比也有显著提高。
2、培养了学生的创新精神和综合应用计算机与数学知识解决实际问题的能力。实验班学生不仅数学成绩有了显著提高,而且计算机操作水平、应用意识有很大的提高,培养了学生的创新精神和综合应用计算机与数学知识解决实际问题的能力。在校第四届科技文化节中,我组织班级同学利用"几何画板"和"PowerPoint"软件,自选课题制作课件并展示。陆娜等同学的"用运动的观点,特殊化的手段,复习四边形",以新的视角,创造性地对四边形的知识结构进行重组,潘仲贤等同学的"菱形的画法",综合应用"几何画板"及几何的有关知识总结出菱形的六种画法,陈耀斌同学的"多边形内角和定理证明",利用几何画板的动态功能得到了多边形内角和定理的四种证法,这些课件均获得了听课老师好评。
上述实验结果说明现代教学媒体对改进数学教学,提高教学质量起了很大的作用,不但提高了学生的数学成绩,而且培养了学生的创新意识和实践能力。提高了学生的素质。
三、讨论与思考
(一)CAI技术对教学效果影响的原因分析
CAI对教学过程的影响是全面而深刻的,概括来说有以下三个方面:
首先,CAI技术使教学内容更加丰富和生动。从外在形式上看,传统的教学内容主要是描述性的文字和补充说明性的***形、***表,而多媒体信息符号不仅有文字,还包含***形、动画、***象、声音、视频等其他媒体信息,形成一种多媒体信息形态的结合体,具有表现形式丰富、生动的特点;从内在结构上看,传统的文字教材及其辅导材料都是以线性结构来组织学科知识结构,顺序性很强,学生一般只能在教师的教授下获得知识,在学习过程中,对教师的依赖性较大。而多媒体教材是按照人脑的联想思维方式,用网状非线性结构组织管理信息的,其基本结构由节点和链组成。节点表示教学内容的知识点,节点内容可以是文本、语音、***形、动画、***像或一段活动影像,节点大小可以是一个窗口,也可以是一帧或若干帧所包含的数据,链是知识点之间的层级逻辑关系,这种非线性结构有利于学生进行扩散思维,联想原有的知识,获得新知识。
其次,CAI技术使教学组织形式更加多样和灵活。CAI打破了传统的以教师为中心的班级授课的单一形式,教师可以用大屏幕或网络的广播功能完成班级集体授课,也可让学生自己动手操作电脑,每一台电脑相当于一位助教,学生可根据自己的情况控制学习进度,教师通过点对点的操作与学生交流,或通过巡回辅导可以更准确地把握每个学生的学习进程,面对面地对学生进行帮助,使得以教师为主导、学生为主体的教学模式以及个别化教学得以真正实现。
第三,CAI技术使学生的学习更加主动和积极。体现在:一是有利于发挥学生的主体作用。计算机引入数学教学,使学生的学习方式由"听讲"、"记笔记"更多地变为观察、实验和主动地思考,有利于发挥学生在学习中的主体地位;二是有利于知识的获取与保持。大量的实验证实:人类接受外界信息时以视觉获取的信息量最大,占83%,听觉次之,占11%,多媒体技术既能看得见,又能听得见,还能用手操作。这样通过多种感官的刺激所获取的信息量,比单一地听讲强得多,而且还非常有利于知识的保持;三是有利于提供高质量的及时反馈。研究表明,学生记忆的半衰期一般为24小时,因而教学信息反馈的及时与否,对教学效果有很大影响。利用CAI交互性强的特点,学生的练习和作业可直接在计算机上操作完成,并得到及时反馈,使学生正确的结果得以强化,错误之处得以及时矫正。
(二)开展数学CAI应避免的误区
首先,应用数学CAI要留足师生活动的空间。计算机高速处理信息的优点,改变了教师作***、板书费时,课堂节奏缓慢的状态,增加了教学容量,提高了教学效率。但有的老师片面追求这种快节奏、高效率,把整节课的所有教学内容和板书都存储在电脑中,教师在课堂上动动鼠标,敲敲键盘,多媒体成了"电子黑板",教师成了"机器操作者",学生整堂课面对着屏幕,原先低效的"人灌",变成了高效的"机灌",笔者曾听过一节多媒体公开课《椭圆》,从定义的引入到标准方程的推导,整节课老师没写过一个字的板书,所有内容全部由屏幕显示,教学速度之快连听课的教师都来不及记听课笔记,很难想象学生的思路能跟得上,这样的教学效果是可想而知的。因此,数学CAI教学应注意留留足师生活动的空间。
第二,应用数学CAI要注意选好切入点。CAI有许多传统教学媒体无法比拟的优势:如交互性强、***文并茂、实时计算、运算绘***迅速准确等特点和动画、***形变换等功能,这些都是传统教学手段所无法企及的。但不顾实际情况和教学效果,过多过滥地使用计算机,,也会造成一些负面影响,笔者曾见过一个辅助教学软件演示椭圆的画法及定义,软件利用计算机绘***的功能,动态地把椭圆画出来,让学生通过观察给出椭圆的定义。虽然生动有效,但实际上老师在数学课上带上一根绳两个***钉,就能非常直观地画出椭圆,并由此很方便地导出椭圆的定义;又如立几中柱、锥、台概念的教学,用立几模型也比用CAI更直观,效果更好。因此,数学CAI要注意选好切入点,应当运用CAI的优势克服传统教学媒体的不足,突破难点,提高教学质量。
第三,应用数学CAI要注意学生抽象思维能力的培养。CAI可通过动画、过程演示等手段抽象问题具体化,使复杂的数学思维过程被更好地展现出来,变得易于理解,从而达到化难为易的目的,但在教学过程中,若只是一味地把一切抽象问题都形象化,使学生轻易得到答案,不利于学生抽象思维能力的培养。因而教师必须在先进的教学思想指导下,用最佳的教学策略为学生创设一个更富有启发性的教学情境,发动学生积极参与,让他们去思考、发现、探索,促进学生形象思维与抽象思维能力的同步发展。
第四,应用数学CAI切忌盲目追求"多媒体"功能。开展数学CAI切忌立足于现代教学媒体的功能来设计教学活动,一味地追求视听新异刺激。如有的CAI课,整节课几乎充满了影视画面或动画,在教学过程中,学生答对了,就出现鼓掌声或来一段欢快的音乐,并出现一个笑嘻嘻的孩子的画面,当学生答错了,出现砸碎玻璃杯声或一串怪叫声并出现一个哭泣的孩子的画面。这样做的结果不仅不能增强教学效果,反而喧宾夺主,干扰学生思考,削弱课堂教学效果。
第五,数学CAI应尽量创设实验环境,促进学生有效学习。目前数学CAI中,以教为主的教学设计多,而以学为主的教学设计少,大多数课件都起着帮助教师讲解演示的作用。然而,把计算机引入教学仅仅是用大屏幕显示出来是不够的,还应尽量创设实验环境,引导学生通过计算机"实验操作发现规律提出猜想进行证明",亲历数学建构过程,逐步掌握认识事物、发现真理的方法,发展思维能力,培养创造力,提高数学素养。
[参考文献]
1.张君达、郭春彦:《数学教育实验设计》.上海教育出版社1994.12
2.潘懋德、唐玲、王珏:《信息技术师资培训教材》(应用篇).北京师范大学出版社.1999.8
3.周灵:《CAI实践中若干问题的思考》福建中学教学.2001.4
4.顾玲沅等:《青浦实验启示录》.上海教育出版社.1999.10
5.田万海.:《数学教育学》浙江教育出版社.1993.6
6.美国国家研究委员会:《人人关心数学教育的未来》世界***书出版公司1993.1
中学数学研究论文范文第6篇
[内容摘要]电教手段的应用有利于体现数形结合的数学思想方法、有利于突破教学难点、有利于动态地显示给定的几何关系;充分利用电教手段安排课堂教学结构,还有助于发挥学生的主体作用;运用电教手段进行教学,可创设愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学。
[关键词]电教手段、数形结合
当前,信息技术飞速发展,知识经济已见端倪,我们已经进入了21世纪,面临人类文明史上的又一大飞跃--由工业化社会进入到信息化社会。21世纪,既为我们带来新的机遇,也为我们带来新的挑战--世界各国将迎来更为激烈的国际竞争。21世纪的竞争,是经济实力的竞争,科学技术的竞争,归根结底是人才的竞争,而人才的竞争取决于教育。为此,世界各国对当前教育的发展及信息技术在教育中的应用都给予了前所未有的关注,都试***在未来的信息社会中让教育走在前列,以便在国际竞争中立于不败之地。如此的竞争态势是对教育的严峻挑战,现代教育技术在迎接这场挑战中将起到关键的作用。因此,我国***不失时机地提出:要把现代教育技术(主要指电教手段)当作整个教育改革的"制高点"和"突破口"。
应用电教手段改善和提高教学效果是当前教学改革的一个方向,一方面它提供外部刺激的多样性有利于知识的获取,另一方面人机对话有利于激发学生的学习兴趣和认知主体作用的发挥。
影响数学学习的心理素质主要有:求知欲望、意志力、动机和兴趣、自信心等,因此,在课堂教学中运用电教手段进行教学,可有效地开启学生思维的闸门,激发联想,激励探索,为一堂课的成功铺下基石。
1、电教手段的应用有利于体现数形结合的数学思想方法
高中解析几何是综合运用代数和几何知识的一门综合性的学科,其特点之一是数和形的紧密结合,即利用方程的性质来研究相应的几何***形的特点,使几何***形及其研究实现了"代数法"。反之,如果给代数问题以几何解释,那么可以理解代数问题的直观意义,解析几何的另一个基本特点是把曲线(包括直线)看作是按一定的几何条件运动的集合,以运动、变化的观点来研究它的性质,所以具有数形结合的思想,运动变化的辨证观点是学好解析几何的关键。
电教手段应用于解几教学应是在教学过程中充分揭示教学内容中内在辨证关系,逐步使学生养成运用上述思想和观点去分析和解决问题的习惯,从而深刻地理解和掌握教学内容的实质。基于此,应主动有效地设计出"数、形动态"演示特点,赋予它特有的魅力。即能够迅速改变变数,同步达到屏幕***形的变化,或屏幕***形的渐变;窗口同步显示变数的变化,并且演示过程可以根据需要进行控制,演示速度可任意调整;可以随时看到各种情形下的数量变化或不变,***形的动或静,把"数"和"形"的潜在关系动态地显示出来。这样教师根据呈现的内容有针对性地加以讲解或组织讨论,引导学生根据内容提出的各种变数来观察、验证、对比、寻找一般规律和特殊属性。使学生能加深对几何***形的感知,敏锐地抓住变化特征,真正地将现代科技应用于辅助教学。
比如线段的定比分点概念的教学,对此概念的学习主要要引导学生深刻认识到定比分点的概念的成因是为了有效地确定线段的唯一分点P的位置,和引入λ值的意义,即在直线、线段上唯一分点P使得有向线段的比值λ与实数对形成了一一对应的关系,进而理解定比分点的实质是通过线段的比"代数化"来确定P点的位置。可让学生积极寻找、分析、修正各种解决问题的方案。设计思路:在屏幕上显示有向直线l,在l上设置两固定点P1、P2和一个动点P,开设变化值λ窗口,对于特殊点的位置,如P1、P2点,预先设置λ对应值(0及不存在)。动点P可用鼠标拖动,动态显示时,窗口同步显示相应λ数值。拖动的速度可自由控制,可快可慢,可停留于某个点。学生可亲手动手演示操作,使直线l时间各种特殊点:P1点、P2点、P1P2中点、P1P2的各种内分点、外分点等的位置与λ值关系显露出来。这样分点变化引起线段的比的变化特征,确实是直观、明显、连续、完整、精确,充分地揭示"形"(线段)与"数"(线段比)的一一对应关系。
2、电教手段的应用有利于突破教学难点
这种精巧的构思辅助教学的方式既是进行验证、探索的极好工具,又是创设"情景"的好帮手。它使数学许多内容推陈出新,教学面貌焕然一新,重点善于把握、难度易以突破、关键易于抓住。
比如在上抛物线的定义这个概念之前,我们认真研究了三个问题:①教材是怎样引进概念的,怎样扩展内容的;②怎样设计具有启发性的问题,引导学生积极探索新知;③怎样有效组织获取知识过程的教学。
因此,对此课件的设计着力于展示概念的形成、发展过程,揭示本质属性。对此概念的学习主要要引导学生形象地认识到抛物线的概念的成因,即其是由到定点的距离与到定直线距离相等的点组成的集合。其设计思路大致如下:先设置一定点及与该定点有一定距离的定直线,然后截取一段段长度不等的线段,作为"距离"d,作出以该定点为圆心,以该距离d为半径的圆,此即到该定点距离为d的点的轨迹;再作出与该定直线平行,且到定直线距离也为d的两条直线,此即到该定直线距离为d的点的轨迹上的一点;不断变换线段的长度,即改变d的大小,就可得到不同的点,将这些点连接起来,即为符合到定点的距离与到定直线距离相等这一条件的点就是这条曲线。可以通过动画显示得出该轨迹的形状的过程,由此可引出抛物线的轨迹***形。
3、电教手段的应用有利于动态地显示给定的几何关系
例题的教学设计着力于萌发解题灵感,启迪良好的思维策略。且有助于让学生领略数学美感,激发学习兴趣。例如在立体几何的教学中,利用电教手段就能够动态地显示给定的几何关系。
例如:例题:四边形ABCD是正方形,PA面ABCD,则***中七个平面中,有几对平面互相垂直?
设计思路:这道题大部分学生都可以找到部分互相垂直的平面,但是要把所有互相垂直的平面都找出来并不是一蹴而就的事,因此,根据立体几何中判断两平面互相垂直的定理"如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。"在设计过程中首先先依次显示***示中能与已知平面垂直的线段:PA、AB、AD,再显示CD、AB,最后显示BC、BD,边显示这些线段,边分析该线段所在的平面和其分别垂直于哪些平面,将这些平面分别用不同的颜色动态显示出来,就可清晰的判断出哪几个平面互相垂直了。最后,再排除掉重复的,就可得出正确的答案。
这样,形象地应用电教手段,培养学生的逻辑思维能力和空间观念,较能够根据学生的认知规律和心理特点,在对知识的讲述上又可贯穿启发式思想,充分调动学生的学习主动性。
学习是一种劳动,学习是需要付出一定代价的。多利用电教手段进行教学,可以让学生更主动、愉快地学习,并能使课堂教学形式更加活泼多样,更易以激发学生的学习兴趣,使学生通过认真、努力的学习,变"苦"为"乐",体验到"领悟"的欢乐。
4、充分利用电教手段安排课堂教学结构,有助于发挥学生的主体作用。
学生获得知识,一是从被动接受中获得,二是从主动学习中获得。我们应提倡让学生在教师的启发、诱导下,主动地获取知识。这就要求教师注意研究学生的学习规律,改变重视"教"而忽略"学"的现状,适当的应用电教手段进行教学,可以对学生加强学习方法的指导,使学生在老师的指导下,从不知到知,从知之较少到知之较多,并在学会数学知识的同时学会学习的方法。
为了在实际教学中体现突出学生的主体作用这一特点,我们在考虑课堂教学结构的设计时,重点应研究四个方面:①科学安排一节课的各组成部分进行的顺序;②合理分配和使用时间;③精心设计安排练习;④要根据不同的教学内容和教学要求,有计划有步骤地引导学生进行各种认识活动,如操作、观察、测量、画***、解题等,引导学生在活动中思考,逐步放手让学生自己去探索。而电教手段的应用,可以节约传统的板书、画***等的时间,从时间上使有限的课堂四十分钟的时间"变长"了,使学生的主体作用可以得到更加充分的发挥。
5、运用电教手段进行教学,可创设愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学。
兴趣是学习的动机和动力,在学习活动中起着十分重要的作用。教师要认真钻研教材和组织教材,用数学本身的美去感染学生以提高兴趣,用巧妙的课堂教学安排去唤起学生的学习兴趣,用多样的教学手段去激发学生的学习兴趣。学生获得知识,一是从被动接受中获得,二是从主动学习中获得。我们应提倡让学生在教师的启发、诱导下,主动地获取知识。这就要求教师注意研究学生的学习规律,改变重在"教"而忽略"学"的现状,加强学习方法的指导,使学生在老师的指导下,从不知到知,从知之较少到知之较多,并在学会数学知识的同时学会学习的方法。
横看成岭侧成峰,这可以说是对电教手段进行教学的最佳写照。的确,电脑技术的加速发展,正逐渐改变人们的思维、表达、沟通方式,乃至改变人们长久以来形成的生活方式。
[参考文献]
1何克抗,《现代教育技术》,北京师范大学出版社,1998年
2伍春兰,对影响学生非智力因素的一次调查,数学教育学报,1997,4
3虞涛,CAI技术在解析几何教学中的应用,湖北:中学数学,2000,5
转载请注明出处学文网 » 中学数学研究论文范文